Causal Discovery of Dynamic Models for Predicting Human Spatial Interactions

Luca Castri¹, Sariah Mghames¹, Marc Hanheide¹, Nicola Bellotto²

¹Lincoln Centre for Autonomous Systems (LCAS), University of Lincoln, UK ²University of Padua, Italy

{lcastri, smghames, mhanheide}@lincoln.ac.uk, nbellotto@dei.unipd.it

Science which studies the cause-effect relationship between events [1]

Causal Discovery

starting from a set of variables (events) aims to reconstruct the cause-effect model underlying them

Х

Ζ

x x z z z z z z z

Causal Reasoning

reason on the causal model to predict how the observed system evolves

[1] Pearl, J., & Mackenzie, D. (2019). The book of why

UNIVERSITY OF

Science which studies the cause-effect relationship between events [1]

Causal Discovery

starting from a set of variables (events) aims to reconstruct the cause-effect model underlying them

x y z w

Causal Reasoning

reason on the causal

model to predict how the

observed system evolves

Can robots benefit from causal inference ?

[1] Pearl, J., & Mackenzie, D. (2019). The book of why

L-CAS

Enable the robot to understand human behaviours by discovering the cause-effect relationship between events during a Human-Robot Spatial Interaction (HRSI)

L-ĈAS

UNIVERSITY OF

Enable the robot to understand human behaviours by discovering the cause-effect relationship between events during a Human-Robot Spatial Interaction (HRSI)

L-ĈAS

UNIVERSITY OF

Enable the robot to understand human behaviours by discovering the cause-effect relationship between events during a Human-Robot Spatial Interaction (HRSI)

Discovering the causal model will enable the robot to reason on it and to answer questions like:

• "what happens if I go this way?"

Causal discovery from observational data

• system variables:

$$\theta_g$$
, d $_g$, v

• expected cause-effect relationships

•
$$\theta_g = f(\theta_g, \mathbf{d}_g)$$

•
$$d_g = f(d_g, \theta_g, v)$$

•
$$v = f(v, d_g)$$

Multi-agent scenario

- system variables:
 d_g, v, risk
- expected cause-effect relationships
 - $d_g = f(d_g, v)$
 - $v = f(v, d_g, risk)$
 - risk = f(risk, v)

Real-world dataset and evaluation methodology

L-CAS

THÖR warehouse-like environment

ATC

Different scenario observed from the same dataset → different causal models

Same scenario observed from different datasets → same causal models

Different scenario observed from different datasets → different causal models

Causal discovery algorithm - PCMCI

PCMCI algorithm:

- PC algorithm + false-positive rate control optimization (MCI)
- key parameters:
 - τ maximum time delay
 - α confidence level (false-positive rate threshold)

L-CAS

τ = 1

Gaussian Process Regressor - GPR

L-CAS

Gaussian Process Regressor:

- supervised learning method designed to solve regression and probabilistic classification problems
- widely used for time-series prediction [2]
- embedding the causal structure in the GPR \rightarrow Causal GPR

[2] Roberts, Stephen, et al. "Gaussian processes for time-series modelling." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences (2013)

UNIVERSITY OF

Results: non-causal GPR vs causal GPR

Results: non-causal GPR vs causal GPR

Results: non-causal GPR vs causal GPR – Single-agent scenario (THÖR)

UNIVERSITY OF

- Non-causal vs causal GPR comparison for the scenarios:
 - Single-agent (THÖR)
 - Single-agent (ATC)
 - Multi-agent (THÖR)

Mean NMAE	Single-agent		Multi-agent
	THÖR	ATC	THÖR
Non-causal GPR	0.21761	1.61692	0.37849
Causal GPR	0.1095	1.54552	0.36453

- Non-causal vs causal GPR comparison for the scenarios:
 - Single-agent (THÖR)
 - Single-agent (ATC)
 - Multi-agent (THÖR)

Mean NMAE	Single-agent		Multi-agent
	THÖR	ATC	THÖR
Non-causal GPR	0.21761	1.61692	0.37849
Causal GPR	0.1095	1.54552	0.36453
	1		
~ -50% prediction error		~ -4% prediction error	

Conclusion

Summing up

- First application of a causal discovery method to real-world sensor data for modelling HRSI
- New causal models from HRSI

Future work

- Automatically learn the most important features for modelling HRSI
- Causal analysis on observational and interventional data
- Data collected by on-board robot sensor data

Thank you

DARKO link - https://darko-project.eu/

This work has received funding from the EU H2020 research & innovation programme -- grant agreement 101017274 (DARKO)