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Causal inference and Robotics

Science which studies the cause-effect relationship between events [1]

Causal Discovery Causal Reasoning
starting from a set of variables reason on the causal
(events) aims to reconstruct the model to predict how the
cause-effect model underlying them observed system evolves
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[1] Pearl, J., & Mackenzie, D. (2019). The book of why ahs
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General idea

Enable the robot to understand human behaviours
by discovering the cause-effect relationship
between events during a Human-Robot Spatial
Interaction (HRSI)
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General idea

Enable the robot to understand human behaviours
by discovering the cause-effect relationship
between events during a Human-Robot Spatial
Interaction (HRSI)

| can continue
since the human
will remain still
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General idea

Enable the robot to understand human behaviours
by discovering the cause-effect relationship
between events during a Human-Robot Spatial
Interaction (HRSI)

It is better to stay
still and wait for the
human to go away
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General idea

Discovering the causal model will enable the
robot to reason on it and to answer

guestions like:
take the best choice

* “what happensifl go this way?” among possible HRSIs

* “what would have happenedif| remained
still instead of moving?”
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Causal discovery from observational data

Single-agent scenario Multi-agent scenario
e systemvariables: * systemvariables:
Gg, dg, % dg, v, risk
* expected cause-effect * expected cause-effect
relationships relationships
* eg:f(egrdg) * dg:f(dgrv)
* dy =f(dy 04 v) * v=f(v,dgrisk)
* v=f(v,dy) * risk = f(risk, v)
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Real-world dataset and evaluation methodology
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Causal discovery algorithm - PCMCI

PCMCI algorithm:

« PCalgorithm +
false-positive rate control optimization (MCl)

T/strength

* key parameters:

* Tmaximum time delay \
* o confidence level v
(false-positive rate threshold) /
/
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Results: causal discovery
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Gaussian Process Regressor - GPR

Gaussian Process Regressor:

* supervised learning method designed to solve regression and
probabilistic classification problems

* widely used for time-series prediction [2] p N

* embedding the causal structure in the GPR - Causal GPR
Y, \,_I\—J\

[2] Roberts, Stephen, et al. "Gaussian processes for time-series modelling.”
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences (2013) 24

FELDUN
Cig 'l

Luca Castri - Causal Discovery of Dynamic Models for Predicting Human Spatial Interactions a0



Results: non-causal GPR vs causal GPR

Non-causal GPR approach Causal GPR approach
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Results: non-causal GPR vs causal GPR

Non-causal GPR approach
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Results: non-causal GPR vs causal GPR — Single-agent scenario (THOR)

6, non-causal vs causal prediction dg non-causal vs causal prediction v non-causal vs causal prediction

causal NMAE = 0.05289
non-causal NMAE = 0.15992 .

causal NMAE = 0.04291

causal NMAE = 0.01370 - .
non-causal NMAE = 0.04399 S , &

non-causal NMAE = 0.01370
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Non-causal vs causal predicted test data
Non-causal vs causal predicted test data

Non-causal vs causal predicted test data
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Mean NMAE comparison non-causal vs causal prediction

dg(t) = f(6,, d;, v)(t-1) 0.25
- No difference between 0.2
non-causal and causal GPR
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Results: non-causal GPR vs causal GPR - Overall

* Non-causal vs causal GPR comparison for the scenarios:
* Single-agent (THOR)
e Single-agent (ATC)
e Multi-agent (THOR)

THOR THOR
Non-causal GPR 0.21761 1.61692 0.37849
Causal GPR 0.1095 1.54552 0.36453
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Results: non-causal GPR vs causal GPR - Overall

* Non-causal vs causal GPR comparison for the scenarios:
* Single-agent (THOR)
e Single-agent (ATC)
e Multi-agent (THOR)

THOR THOR
Non-causal GPR 0.21761 1.61692 0.37849
Causal GPR 0.1095 1.54552 0.36453
~ -50% " -4%
prediction error prediction error
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Conclusion

Summing up
* First application of a causal discovery method to
real-world sensor data for modelling HRSI
* New causal models from HRSI S

Future work

e Automatically learn the mostimportant features for
modelling HRSI

e Causal analysis on observational and interventional data

 Datacollected by on-board robot sensor data
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