Luca Castri, PhD student @ University of Lincoln, UK

Outline

● Causal Discovery for Time-series Data

- PCMCI algorithm
- Robotics Applications
	- F-PCMCI algorithm
	- ROS-Causal

The PC and FCI causal discovery method work well with discrete/categorical data.

example

The PC and FCI causal discovery method work well with discrete/categorical data.

example

The PC and FCI causal discovery method work well with discrete/categorical data.

example

The PC and FCI causal discovery method work well with discrete/categorical data.

example

The PC and FCI causal discovery method work well with discrete/categorical data.

=

example

non-smoker **0** - smoker **1** age under 50 **0** - age over 50 **1** no lung cancer **0** - lung cancer **1**

The order is not important

The PC and FCI causal discovery method work well with discrete/categorical data.

example

non-smoker **0** - smoker **1** age under 50 **0** - age over 50 **1** no lung cancer **0** - lung cancer **1**

What if our data is time-dependent?

The PC and FCI causal discovery method work well with discrete/categorical data.

example

non-smoker **0** - smoker **1** age under 50 **0** - age over 50 **1** no lung cancer **0** - lung cancer **1**

What if our data is time-dependent?

The PC and FCI causal discovery method work well with discrete/categorical data.

example

non-smoker **0** - smoker **1** age under 50 **0** - age over 50 **1** no lung cancer **0** - lung cancer **1**

What if our data is time-dependent?

The PC and FCI causal discovery method work well with discrete/categorical data.

example

non-smoker **0** - smoker **1** age under 50 **0** - age over 50 **1** no lung cancer **0** - lung cancer **1**

What if our data is time-dependent?

The PC and FCI causal discovery method work well with discrete/categorical data.

example

non-smoker **0** - smoker **1** age under 50 **0** - age over 50 **1** no lung cancer **0** - lung cancer **1**

What if our data is time-dependent?

The PC and FCI causal discovery method work well with discrete/categorical data.

What if we deal with time-series data?

PC/FCI is inappropriate to use with time series data due to:

- time ordering
- lagged dependencies
- high false positive rates due to the autocorrelation.

$$
\begin{cases}\nX_t^0 = 0.2(X_{t-1}^1)^2 + \eta_t^0 \\
X_t^1 = \eta_t^1 \\
X_t^2 = 0.3(X_{t-2}^1)^2 + \eta_t^2\n\end{cases}
$$

$$
\begin{pmatrix}\n\frac{1}{2} & \frac{1}{2} & \
$$

Outline

- Causal Discovery for Time-series Data
	- **○ PCMCI algorithm**
- Robotics Applications
	- F-PCMCI algorithm
	- ROS-Causal

It consists of two main steps:

● **PC algorithm**

retrieves the causal model structure by considering ONLY lagged dependencies as possible causal relationships between variables

● MCI test

validates the structure found at the previous step by performing a false positive rate optimisation control

 $X_{t-\tau}^i \perp \!\!\! \perp X_t^j | \tilde{P}(X_{t-\tau}^i), \tilde{P}(X_t^j) |$

It consists of two main steps:

● **PC algorithm**

retrieves the causal model structure by considering ONLY lagged dependencies as possible causal relationships between variables X

Y

 Z

W

● MCI test

validates the structure found at the previous step by performing a false positive rate optimisation control

 $X_{t-\tau}^i \perp \!\!\! \perp X_t^j | \tilde{P}(X_{t-\tau}^i), \tilde{P}(X_t^j)$

It consists of two main steps:

● **PC algorithm**

retrieves the causal model structure by considering ONLY lagged dependencies as possible causal relationships between variables

● MCI test

validates the structure found at the previous step by performing a false positive rate optimisation control

 $X_{t-\tau}^i \perp \!\!\! \perp X_t^j | \tilde{P}(X_{t-\tau}^i), \tilde{P}(X_t^j)$

It consists of two main steps:

● **PC algorithm**

retrieves the causal model structure by considering ONLY lagged dependencies as possible causal relationships between variables

● MCI test

validates the structure found at the previous step by performing a false positive rate optimisation control

 $X_{t-\tau}^i \perp \!\!\! \perp X_t^j | \tilde{P}(X_{t-\tau}^i), \tilde{P}(X_t^j)$

It consists of two main steps:

● **PC algorithm**

retrieves the causal model structure by considering ONLY lagged dependencies as possible causal relationships between variables

● MCI test

validates the structure found at the previous step by performing a false positive rate optimisation control

 $X_{t-\tau}^i \perp \!\!\! \perp X_t^j | \tilde{P}(X_{t-\tau}^i), \tilde{P}(X_t^j) |$

It consists of two main steps:

● **PC algorithm**

retrieves the causal model structure by considering ONLY lagged dependencies as possible causal relationships between variables

● MCI test

validates the structure found at the previous step by performing a false positive rate optimisation control

 $X_{t-\tau}^i \perp \!\!\! \perp X_t^j | \tilde{P}(X_{t-\tau}^i), \tilde{P}(X_t^j) |$

It consists of two main steps:

● **PC algorithm**

retrieves the causal model structure by considering ONLY lagged dependencies as possible causal relationships between variables

● MCI test

validates the structure found at the previous step by performing a false positive rate optimisation control

 $X_{t-\tau}^i \perp \!\!\! \perp X_t^j | \tilde{P}(X_{t-\tau}^i), \tilde{P}(X_t^j) |$

It consists of two main steps:

● **PC algorithm**

retrieves the causal model structure by considering ONLY lagged dependencies as possible causal relationships between variables

● MCI test

validates the structure found at the previous step by performing a false positive rate optimisation control

 $\big\| \!\perp\!\!\!\perp \big[\!\!\!\!\!\!\!\!\!X_t^j \big|\!\!\!\!\!\big]\tilde{P}(X_{t-\tau}^i),\tilde{P}(X_t^j).$

It consists of two main steps:

● **PC algorithm**

retrieves the causal model structure by considering ONLY lagged dependencies as possible causal relationships between variables

● MCI test

validates the structure found at the previous step by performing a false positive rate optimisation control


```
random state = np.random.default rng(seed=42)data = random state.standed normal((500, 3))for t in range(1, 500):
   data[t, \theta] += 0.4*data[t-1, 1]**2
   data[t, 2] += 0.3*data[t-2, 1]**2var names = [r'sX^0s', r'sX^1s', r'sX^2s']dataframe = pp.DataFrame(data, var names=var names)
```

```
gpdc = GPDC(significance='analytic', gp params=None)
pcmci qpdc = PCMCI(
    dataframe=dataframe.
    cond ind test=gpdc,
    verbosity=0)
```

```
results = pcmci qpdc.run pcmci(tau max=2, pc alpha=0.1, alpha level = 0.01)
tp.plot graph(
   val matrix=results['val matrix'],
   graph=results['graph'],
   var names=var names,
    show colorbar=False,
```

$$
\begin{cases}\nX_t^0 = 0.4(X_{t-1}^1)^2 + \eta_t^0 \\
X_t^1 = \eta_t^1 \\
X_t^2 = 0.3(X_{t-2}^1)^2 + \eta_t^2\n\end{cases}
$$

Outline

● Causal Discovery for Time-series Data ○ PCMCI algorithm

● Robotics Applications

- F-PCMCI algorithm
- ROS-Causal

Robotics Applications

Two main challenges in robotics:

- execution time of the causal discovery analysis
- conduct the causal discovery analysis online

Outline

- Causal Discovery for Time-series Data ○ PCMCI algorithm
- Robotics Applications
	- **○ F-PCMCI algorithm**
	- ROS-Causal

PCMCI computational cost depends on:

- the length of the time-series
- the number of variables

F-PCMCI steps:

- takes in input a prefixed set of variables
- the Transfer Entropy-based filter analyses and removes irrelevant variables (e.g., constants or isolated ones). The reduced variable set is used to create a hypothetical causal model
- the hypothetical causal model needs to be validated by a proper causal analysis, which is performed by PCMCI

This strategy enables **faster** and **more accurate** causal discovery

$$
\begin{cases} x_0(t) = 2x_1(t-1) + 3x_3(t-1) + \eta_0 \\ x_1(t) = \eta_1 \\ x_2(t) = 1.1x_1(t-1)^2 + \eta_2 \\ x_3(t) = x_3(t-1) \cdot x_2(t-1) + \eta_3 \\ x_4(t) = x_4(t-1) + x_5(t-1) \cdot x_0(t-1) + \eta_4 \\ x_5(t) = \eta_5 \\ x_6(t) = \eta_6 \end{cases}
$$

$$
\begin{cases} x_0(t) = 2x_1(t-1) + 3x_3(t-1) + \eta_0 \\ x_1(t) = \eta_1 \\ x_2(t) = 1.1x_1(t-1)^2 + \eta_2 \\ x_3(t) = x_3(t-1) \cdot x_2(t-1) + \eta_3 \\ x_4(t) = x_4(t-1) + x_5(t-1) \cdot x_0(t-1) + \eta_4 \\ x_5(t) = \eta_5 \\ x_6(t) = \eta_6 \end{cases}
$$
Isolated

Considering the interaction scenario modelled by three variables

- v_{ii} : relative velocity between agent i and j
- d_{ii} : distance between agent i and j
- theta α_{ii} : angle between agent i and j

Are all the observable variables useful to understand the observed scenario?

We need to filter the variables before conducting the causal analysis

Outline

- Causal Discovery for Time-series Data ○ PCMCI algorithm
- Robotics Applications
	- F-PCMCI algorithm
	- **○ ROS-Causal**

people tracker

navigation stack

BORTO TIRGO

- ROS-Causal extracts and collects data from a HRI scenario, such as agents' trajectories, and performs causal analysis on the collected data in a batched manner. It is composed by four different rosnodes:
	- roscausal_robot
	- o roscausal human
	- roscausal data
	- roscausal_discovery

Castri, Luca, et al. "ROS-Causal: A ROS-based Causal Analysis Framework for Human-Robot Interaction Applications" (2024).

roscausal_robot: collects data from several rostopics related to the robot (e.g., position, velocity, target position, etc.), and merge them into a single rostopic: *roscausal/robot*

roscausal_human: collects data from several rostopics related to the human (e.g., position, velocity, target position, etc.), and merge them into a single rostopic: *roscausal/human*

roscausal_data: subscribes to the topics */roscausal/robot* and */roscausal/human* and begins collecting data in a CSV file. Once the desired time-series length (rosparam) is reached, the node provides the option to post-process the data and finally saves the CSV file into a designated folder.

roscausal discovery: performs causal discovery analysis on the collected data and publishes the result on the *roscausal/causal_model* rostopic. So far, it incorporates two causal discovery methods: PCMCI and F-PCMCI.

Castri, Luca, et al. "ROS-Causal: A ROS-based Causal Analysis Framework for Human-Robot Interaction Applications" (2024).

ROS-Causal_HRISim

HRI simulator involving:

- TIAGo robot
- pedestrians

- What can a reconstructed causal model be useful for?
	- Prediction
	- Motion planning
	- Decision making

- What can a reconstructed causal model be useful for?
	- Prediction
	- Motion planning
	- Decision making

Trajectory generated by a planner not accounting for human reaction to robot's actions

- What can a reconstructed causal model be useful for?
	- Prediction
	- Motion planning
	- Decision making

Trajectory generated by a planner not accounting for human reaction to robot's actions

But

What if, as soon as the robot starts moving towards the target pos, the person reacts?

- What can a reconstructed causal model be useful for?
	- Prediction
	- Motion planning
	- Decision making

Trajectory generated by a planner not accounting for human reaction to robot's actions

But

What if, as soon as the robot starts moving towards the target pos, the person reacts?

- What can a reconstructed causal model be useful for?
	- Prediction
	- Motion planning
	- Decision making

Trajectory generated by a planner not accounting for human reaction to robot's actions

Knowing the causal model

can facilitate the prediction of the person spatial behaviours

- What can a reconstructed causal model be useful for?
	- Prediction
	- Motion planning
	- Decision making

Trajectory generated by a planner not accounting for human reaction to robot's actions

Knowing the causal model

- can facilitate the prediction of the person spatial behaviours
- can help the robot to plan its motion in a smarter way

Reference

- Runge, J., Nowack, P., Kretschmer, M., Flaxman, S. and Sejdinovic, D., 2019. Detecting and quantifying causal associations in large nonlinear time series datasets. Science advances, 5(11).
- Castri, L., Mghames, S., Hanheide, M. and Bellotto, N., 2023. Enhancing Causal Discovery from Robot Sensor Data in Dynamic Scenarios. In 2nd Conference on Causal Learning and Reasoning.
- Castri, L., Beraldo, G., Mghames, S., Hanheide, M. and Bellotto, N., 2024. ROS-Causal: A ROS-based Causal Analysis Framework for Human-Robot Interaction Applications, Workshop on Causal Learning for Human-Robot Interaction (Causal-HRI), ACM/IEEE International Conference on Human-Robot Interaction (HRI).

Thank you, questions?