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Motivation — what is Causal Inference?
e Whatisit?

Science that studies the cause-and-effect relationship between events
[Pearl, J., & Mackenzie, D. (2019). The book of why]

e [tis divided into two main areas:
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Causal Discovery
starting from a set of
variables (events) aims to
reconstruct the cause-effect
model underlying them

N

)




Motivation — what is Causal Inference?

What is it?

Science that studies the cause-and-effect relationship between events

[Pearl, J., & Mackenzie, D. (2019). The book of why]

It is divided into two main areas:

7

Causal
Discovery

)

"

e

-

Causal Reasoning
reason on the causal model
structure and on the cause-effect
strength to predict how the
observed system evolves
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Motivation — robotics scenario

DARKQ

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn



Motivation — robotics scenario

| can continue
since the human
will remain still
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Motivation — robotics scenario

43 better to stay

still and wait for
the human to go
away
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Motivation — robotics scenario

Discovering the causal model will
enable the robot to reason on it and to
answer questions like:

 “what happens 1f I go this way?”

» “what would have happened 1f I /

remained still instead of moving?” 7" ltis better to stay
O still and wait for

the human to go
away
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Motivation — robotics scenario
Discovering the causal model will
enable the robot to reason on it and to

answer questions like:

 “what happens 1f I go this way?”

* “what would have happened if | : /
remained still instead of moving?”’ s 7 ltis better to stay
still and wait for
1 | ; the human to go

away
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Causal Inference overview — why is it important?

Science that studies the cause-and-effect relationship between events

e Cause: | never brush my teeth. Effect: I have 5 cavities.

e C(Cause: I've smoked cigarettes daily for 20 years. Effect: I have lung cancer.

Humans reason causally

e What about machines? They simply analyse data

S——) o

e Performing NON-causal analysis on data can lead to wrong relationships
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Causal Inference overview — why is it important?

The cockcrow is strongly associated with sunrise
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Causal Inference overview — why is it important?

The ice cream sales is strongly associated with shark attacks

Ice Cream Sales vs. Shark Attacks

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

== |ce Cream Sales  e====Shark Attacks
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Causal Inference overview — why is it important?

2
“**:

Correlation
is not
Causation
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Causal Inference overview — causal discovery

e What are we trying to discover? A causal graph
data mmm) causal graph

X Y z

0 20.000000 100.0 340.000000
1 20.204082 100.0 340.408163
20.408163 100.0 340.816327
20.612245 100.0 341.224490

H O N

20.816327 100.0 341.632653

2495 29.183673 300.0 958.367347
2496 29.387755 300.0 958.775510
2497 29.591837 300.0 959.183673
2498 29.795918 300.0 959.591837
2499 30.000000 300.0 960.000000



Causal Inference overview — causal discovery

e What are we trying to discover? A causal graph
Let’s start from...

Undirected Graph
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Causal Inference overview — causal discovery

e What are we trying to discover? A causal graph
Let’s start from...

Undirected Graph

nodes

22



Causal Inference overview — causal discovery

e What are we trying to discover? A causal graph
Let’s start from...

Undirected Graph

edges
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Causal Inference overview — causal discovery

e What are we trying to discover? A causal graph
Let’s start from...

Undirected Graph

x We don’t want this
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Causal Inference overview — causal discovery

e  What are we trying to discover? A causal graph

Undirected Graph

Directed Graph
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Causal Inference overview — causal discovery

e What are we trying to discover? A causal graph

Directed Graph

parent ° ° child
ORC
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Causal Inference overview — causal discovery

e What are we trying to discover? A causal graph

We do not want cycles

Directed Graph
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Causal Inference overview — causal discovery

e What are we trying to discover? A causal graph

¥ 0

We do not want cycles

We need to guarantee the
acyclicity assumption
otherwise we can not
distinguish between cause and
effect

Directed Graph
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Causal Inference overview — causal discovery

e What are we trying to discover? A causal graph

Directed Acyclic Graph (DAG)

Why “Direct”?

We need oriented edges otherwise they
do not represent cause-and-effect
relationships

Why “Acyclic”?

We need to guarantee the acyclicity
assumption otherwise we can not
distinguish between cause and effect

29



Causal Inference overview — causal discovery

e DAG configurations

Chain Fork

O
& e

Collider
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Causal Inference overview — causal discovery

e DAG configurations

Chain

A is a direct cause of B
B 1s a direct cause of C

What about A and C?
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Causal Inference overview — causal discovery

e DAG configurations

Chain

association

A is a direct cause of B
B 1s a direct cause of C

What about A and C?
They are associated (statistical dependent) through B
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Causal Inference overview — causal discovery

e DAG configurations

Chain

n ~ E a
~

-~
-~

association

A is a direct cause of B
B 1s a direct cause of C

What about A and C?
They are associated (statistical dependent) through B

If we condition on B = A and C are conditionally
independent

By conditioning on B, we are creating a blocked path. If
we do not condition on B, the path from A to C is
unblocked and the association is free to flow.
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Causal Inference overview — causal discovery

e How can we discover a causal graph from observational data?

Constraint-based methods Score-based methods\
PC PCMCI GES
DYNOTEARS
FCI tsFCI NOTEARS
Causal )
} : Discovery : Y
Noise-based methods NN-based methods
VARLINGAM
LINGAM Wit
TiMINo ACD
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Causal Inference overview — causal discovery

e PCMCI algorithm

It consists of two main steps:

e PC algorithm
retrieves the causal model structure by considering
ONLY lagged dependencies as possible causal
relationships between variables

o MCI test
validates the structure found at the previous step by
performing a false positive rate optimisation control

X, , AL X]|P(X_.), P(X])

Key parameter: 7~ maximum time delay

® ©® O ®

36



Causal Inference overview — causal discovery

e PCMCI algorithm

It consists of two main steps:

e PC algorithm
retrieves the causal model structure by considering
ONLY lagged dependencies as possible causal
relationships between variables

o MCI test
validates the structure found at the previous step by
performing a false positive rate optimisation control

X, , AL X]|P(X_.), P(X])

Key parameter: 7~ maximum time delay

t-2

® ©® O ®
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Causal Inference overview — causal discovery

e PCMCI algorithm

It consists of two main steps:
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Causal Inference overview — causal discovery

e PCMCI algorithm

It consists of two main steps:

e PC algorithm
retrieves the causal model structure by considering
ONLY lagged dependencies as possible causal
relationships between variables

o MCI test
validates the structure found at the previous step by
performing a false positive rate optimisation control

1 [ X3)P(xi_,)| P(x))

Key parameter: 7~ maximum time delay
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Causal Inference in Human-Robot Spatial Interaction

Reconstructing
Can we speed up
causal models from :
: ) the causal discovery
time-series data of Focess?
HRSIs P

The need of
interventional data
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Causal Inference in Human-Robot Spatial Interaction

Reconstructing
causal models from
time-series data of

HRSIs
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Causal Inference in Human-Robot Spatial Interaction

Reconstructing causal models from time-series data of HRSIs

Aim

enable the robot to understand human behaviours by
discovering the cause-effect relationship between events
during a Human-Robot Spatial Interaction (HRSI)

S
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Causal Inference in Human-Robot Spatial Interaction

Reconstructing causal models from time-series data of HRSIs

il i o
b9 06
L =g
os @11 [
02 |
Single-agent scenario THOR Dataset [A. Rudenko et al. 2020]  Multi-agent scenario
system variables: system variables:
0y,dg,v dg,v,risk
expected cause-effect relationships: expected cause-effect relationships:
0, = f(0y,dy) dy = f(dg,v)
dg = f(dg,0y,v) v = f(v,dg,risk)

v = f(v,0,) risk = f(risk,v) 45



Causal Inference in Human-Robot Spatial Interaction

Reconstructing causal models from time-series data of HRSIs

THOR ATC
warehouse-like environment shopping centre

1= B
- o
X

8. tong Time
- ContinuoUs -Tracking

SCENARIO

Single-agent Multi-agent

THOR

Htm w430

ATC
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Causal Inference in Human-Robot Spatial Interaction

Reconstructing causal models from time-series data of HRSIs

Single-agent Single-agent
THOR ATC

0,223 0.689

0.855 0.708

0.156 0.141

Multi-agent
THOR

0.401

0.764
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Causal Inference in Human-Robot Spatial Interaction

Reconstructing causal models from time-series data of HRSIs

=1

[ Single-agent \ Single-agent [ Multi-agent \

THOR ATC THOR

0,223 0.689
'%0

.osq

0.855

0.708 0.401

J = Rz Y
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Causal Inference in Human-Robot Spatial Interaction

Reconstructing causal models from time-series data of HRSIs

T

1

[ Single-agent \

THOR

0.323

0.855

0.11

-

0.689

Ko.141

Single-agent \
ATC

0
'%0

.osq

0.708

0.764

Multi-agent
THOR

0.401
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Causal Inference in Human-Robot Spatial Interaction

Reconstructing causal models from time-series data of HRSIs

Single-agent
THOR

0.323

0.11

0.855

-

0.689

Single-agent
ATC

0.708




Causal Inference in Human-Robot Spatial Interaction

Reconstructing causal models from time-series data of HRSIs

Gaussian Process Regressor:

» supervised learning method designed to solve regression and
probabilistic classification problems

» widely used for time-series prediction

* embedding the causal structure in the GPR > Causal GPR

51



Causal Inference in Human-Robot Spatial Interaction

Reconstructing causal models from time-series data of HRSIs

Non-causal GPR approach

( 2\

g_J\_
d | N\

NN

L

Causal GPR approach

~

0.156
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Causal Inference in Human-Robot Spatial Interaction

Reconstructing causal models from time-series data of HRSIs

Non-causal GPR approach

A
o U )

NN

~N

J

N

lealuation metric

NMAE(y,j) =

Causal GPR approach

~

0.156
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Causal Inference in Human-Robot Spatial Interaction

Reconstructing causal models from time-series data of HRSIs

64 non-causal vs causal prediction dy non-causal vs causal prediction v non-causal vs causal prediction

» causal NMAE = 0.05289
non-causal NMAE = 0.15992

» causal NMAE = 0.04291
non-causal NMAE = 0.04399

» causal NMAE = 0.01370
120 non-causal NMAE = 0.01370

100 /
80 1 1

60

oo
L#e ey o

40

20

Non-causal vs causal predicted test data

Non-causal vs causal predicted test data
Non-causal vs causal predicted test data
&

» 0.0

ZED 2:5 310 BIS 4:0 4.5 5:0 2‘0 4‘0 6‘0 80 160 1&0 0.0 0.5 1.0 15 2.0 2.5
True test data True test data True test data

Mean NMAE comparison non-causal vs causal prediction

0.25 dg(t) = f(agf dgr V)(t_l)

" S —> No difference between
non-causal and causal GPR
w 0.1095
0.1
- |
, Mean across the NMAE

Human-goal (THOR) for each variable o4

M non-causal GPR M causal GPR



Causal Inference in Human-Robot Spatial Interaction

Reconstructing causal models from time-series data of HRSIs
* Non-causal vs causal GPR comparison for the scenarios:
« Single-agent (THOR)

+ Single-agent (ATC)
 Multi-agent (THOR)

Mean NMAE Single-agent Multi-agent

THOR ATC THOR
Non-causal GPR 0.21761 1.61692 0.37849

Causal GPR 0.1095 1.54552 0.36453
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Causal Inference in Human-Robot Spatial Interaction

Reconstructing causal models from time-series data of HRSIs

* Non-causal vs causal GPR comparison for the scenarios:
« Single-agent (THOR)
+ Single-agent (ATC)
 Multi-agent (THOR)

Mean NMAE Single-agent Multi-agent

THOR ATC THOR

Non-causal GPR 0.21761 1.61692 0.37849

Causal GPR 0.1095 1.54552 0.36453
~-50% ~-4%

prediction error prediction error
56



Causal Inference in Human-Robot Spatial Interaction

Reconstructing causal models from time-series data of HRSIs

Summing up

« First application of a causal discovery method to
real-world sensor data for modelling HRSI

 New causal models from HRSI

Main limitation

* The PCMCI causal discovery is extremely
demanding in terms of computational cost and
hardware resources

L. Castri, S. Mghames, M. Hanheide, and N. Bellotto

Causal Discovery of Dynamic Models for
Predicting Human Spatial Interactions *

Luca Castri®, Sariah Mghames', Marc Hanheide!, and Nicola Bellotto!2

! University of Lincoln, UK, {lcastri,smghames,mhanheide}@lincoln.ac.uk
? University of Padua, Italy, nbellotto@dei.unipd.it

Abstract. Exploiting robots for activities in human-shared environ-
ments, whether warehouses, shopping centres or hospitals, calls for such

tween the latter can help to predict unobserved human beha
anticipate the outcome of specific robot interventions. In this paper, we
propose an application of causal discovery methods to model human-
robot spatial interactions, trying to understand human behaviours from
real-world sensor data in two possible scenarios: humans interacting with
the environment, and humans interacting with obstacles. New methods
and practical solution
of-the-art causal di
ments, with p
demon:

diction approaches. Our results show that the causal model correctly
captures the underlying interactions of the considered scenarios and im-
proves its prediction accuracy.

“Causal discovery of dynamic models for predicting human spatial interactions,”

in International Conference on Social Robotics (ICSR), 2022.
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Causal Inference in Human-Robot Spatial Interaction

Reconstructing
causal models from
time-series data of

HRSIs

Can we speed up
the causal discovery
process?
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Causal Inference in Human-Robot Spatial Interaction

Can we speed up the causal discovery process?

Motivation

Causal analysis of complex and dynamical systems is extremely
demanding in terms of time and hardware resources, making it a
challenge for autonomous robotics with limited hardware resources
and real-time requirements.

None of the state-of-the-art approaches extracts both the important
features representing the system and the causal association between
them, while at the same time taking into account the execution time
and the computational cost for completing the task.

o
€8 DARKS
[
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Causal Inference in Human-Robot Spatial Interaction

Can we speed up the causal discovery process?

Are all the observable variables useful to
understand the observed scenario?

75
{2 DARKS




Causal Inference in Human-Robot Spatial Interaction

Can we speed up the causal discovery process?

Aim
Create an all-in-one algorithm able to:

e seclect the most meaningful features from a
prefixed set of variables

e build a causal model from such selection

in order to enhance speed and accuracy of the causal
discovery and make it more efficient and feasible for
robotics applications.

& ;
£a DARKS
[ ‘ f
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Causal Inference in Human-Robot Spatial Interaction

Can we speed up the causal discovery process?

F-PCMCI steps:
» takes in input a prefixed set of variables

» the Transfer Entropy-based filter analyses and removes irrelevant
variables (e.g., constants or isolated ones). The reduced variable set
is used to create a hypothetical causal model

» the latter needs to be validated by a proper causal analysis, which is
performed by the PCMCI causal discovery algorithm

This strategy enables faster and more accurate causal discovery

62



Causal Inference in Human-Robot Spatial Interaction

Can we speed up the causal discovery process?
PCMCI vs F-PCMCI

The correctness of our approach was evaluated based on toy
problems with known ground-truth causal models. Various types
of dependencies:

e linear and non-linear cross- and auto-dependency;
e noise-only equations;
e independent and dependent equations;

e  different time-lag dependencies.

shd comparison

The analysis was carried out considering a number of system
variables varying between 3 and 7. For each configuration, we
performed 10 run tests with random system coefficients, using as
evaluation metrics the mean over all the tests of:

e  Structural Hamming Distance SHD;
e Fl-score;

e  cxecution time (in secs).

f1_score comparison time comparison

-8 F-PCMCI
-&- PCMCI

Lo
o
!

12 A
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o
)

SHD
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o
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Causal Inference in Human-Robot Spatial Interaction

Can we speed up the causal discovery process?

Modeling Real-world Human Spatial Interactions
We used our approach to model and predict spatial
interactions. This application involves three steps:

e  extracting time-series of sensor data from human spatial interaction scenarios
using the THOR dataset;

e  reconstruct the causal model using F-PCMCI;

e embedding the causal model in a LSTM-based prediction system.

In order to represent human spatial interactions, for each agent we considered 8
variables, which were then used in the causal analysis.

dg distance to goal Bg angle to goal
v velocity ® angular velocity
risk collision risk Zeeq goal position sequence
0 orientation d distance to closest obstacle

obs



Causal Inference in Human-Robot Spatial Interaction

Can we speed up the causal discovery process?

Modeling Real-world Human Spatial Interactions

PCMCI execution time 79°45”

F-PCMCI execution time 17°33”

65



Causal Inference in Human-Robot Spatial Interaction

Can we speed up the causal discovery process?

Modeling Real-world Human Spatial Interactions

OBSERVATION TIME-SERIES CAUSAL MODEL

I
9AB

cor

\_

PREDICTION

ot

\e

non-causal 0.5446
0.3995 {
0.4966
ROMICL 0.3705

0.4745

F-PCMCI 03576

0 0.1 0.2 0.3 0.4

B mean NRMSE
B mean NMAE

0.6 0.7



Causal Inference in Human-Robot Spatial Interaction

Can we speed up the causal discovery process?

Summing up

* We extended and improved a state-of-the-art
causal discovery algorithm, PCMCI, embedding
an additional feature-selection module based on
transfer entropy

« F-PCMCI
https://github.com/Icastri/fpcmci
pip install fpcmci

Main limitation

* We are not exploiting the full power of causal
inference: the intervention

L. Castri, S. Mghames, M. Hanheide, and N. Bellotto,

Proceedings of Machine Learning Research vol 213:1-16, 2023 2nd Conference on Causal Learning and Reasoning

Enhancing Causal Discovery from Robot Sensor Data
in Dynamic Scenarios

Luca Castri LCASTRI@LINCOLN.AC.UK
Sariah Mghames SMGHAMES @LINCOLN.AC.UK
Marc Hanheide MHANHEIDE @LINCOLN.AC.UK

University of Lincoln, UK

Nicola Bellotto NBELLOTTO@DELUNIPD.IT

University of Padua, Italy

Editors: Mihaela van der Schaar, Dominik Janzing and Cheng Zhang

Abstract

Identifying the main features and learning the causal relationships of a dynamic system from time-
series of sensor data are key problems in many real-world robot applications. In this paper, we
propose an extension of a state-of-the-art causal discovery method, PCMCI, embedding an addi-
tional feature-selection module based on transfer entropy. Starting from a prefixed set of variables,
the new algorithm reconstructs the causal model of the observed system by considering only its
main features and neglecting those deemed unnecessary for understanding the evolution of the sys-
tem. We first validate the method on a toy problem and on synthetic data of brain network, for
which the ground-truth models are available, and then on a real-world robotics scenario using a
large-scale time-series dataset of human trajectories. The experiments demonstrate that our so-
lution outperforms the previous state-of-the-art technique in terms of accuracy and computational
efficiency. allowing better and faster causal discovery of meaningful models from robot sensor data.
Keywords: causal discovery, feature selection, time-series, transfer entropy, causal robotics.

“Enhancing causal discovery from robot sensor data in dynamic scenarios,”

in Conference on Causal Learning and Reasoning, 2023.


https://github.com/lcastri/fpcmci

Causal Inference in Human-Robot Spatial Interaction

Reconstructing
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Causal Inference in Human-Robot Spatial Interaction

The need of interventional data

Motivation
a primary limitation of the current state-of-the-art algorithms is that they can only handle observational data.

The latter are often insufficient to retrieve the correct causal model in complex scenarios where it is impossible
to account for all the variables responsible for the system’s evolution. In such cases, data from experiments,
1.e. interventional data, are needed to eliminate spurious links and enhance the quality of the causal model

Example
Hidden confounder scenario
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Causal Inference in Human-Robot Spatial Interaction

The need of interventional data

Motivation
a primary limitation of the current state-of-the-art algorithms is that they can only handle observational data.

The latter are often insufficient to retrieve the correct causal model in complex scenarios where it is impossible
to account for all the variables responsible for the system’s evolution. In such cases, data from experiments,
1.e. interventional data, are needed to eliminate spurious links and enhance the quality of the causal model

Example
Hidden confounder scenario

e = —
°e ______________
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Causal Inference in Human-Robot Spatial Interaction

The need of interventional data

Motivation
a primary limitation of the current state-of-the-art algorithms is that they can only handle observational data.

The latter are often insufficient to retrieve the correct causal model in complex scenarios where it is impossible
to account for all the variables responsible for the system’s evolution. In such cases, data from experiments,
1.e. interventional data, are needed to eliminate spurious links and enhance the quality of the causal model

Example
Hidden confounder scenario

0 - =
OO T

Interventional data are needed to remove spurious links 71




Causal Inference in Human-Robot Spatial Interaction

The need of interventional data

Motivation
a primary limitation of the current state-of-the-art algorithms is that they can only handle observational data.

The latter are often insufficient to retrieve the correct causal model in complex scenarios where it is impossible
to account for all the variables responsible for the system’s evolution. In such cases, data from experiments,
1.e. interventional data, are needed to eliminate spurious links and enhance the quality of the causal model

Example
Hidden confounder scenario

Performing an intervention on A, i.e. forcing its value:
e breaks the input links to A

) e we can study the effect on C
@ .............. A_C link iS

e Ifvarying A does not lead any change on C  mmmp

spurious 29



Thank you

questions?

Luca Castri, Website: https://darko-project.eu rf&
lcastri@lincoln.ac.uk This project has received funding from the Q
DN ESLN PhD student European Union’s Horizon 2020 research and Q&j DA R KV
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