

Causal Discovery for Time-Series Data

Outline

- **Causal Discovery for Time-series Data**
 - PCMCI algorithm
- Robotics Applications
 - F-PCMCI algorithm
 - ROS-Causal

Causal Discovery for Time-series Data

The PC and FCI causal discovery method work well with discrete/categorical data.

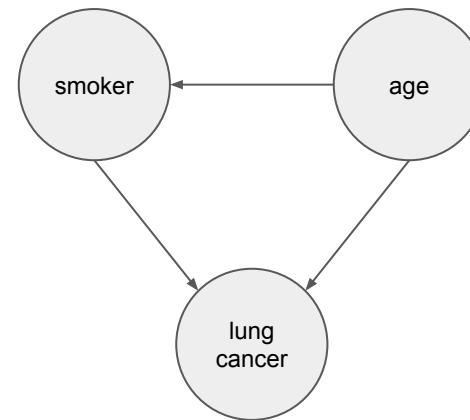
example

non-smoker **0** - smoker **1**

age under 50 **0** - age over 50 **1**

no lung cancer **0** - lung cancer **1**

Smoker	Age	Lung cancer
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1



Causal Discovery for Time-series Data

The PC and FCI causal discovery method work well with discrete/categorical data.

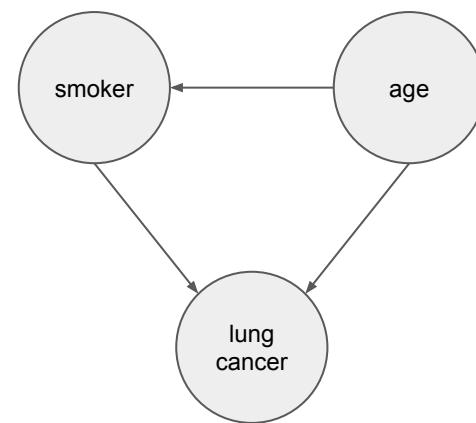
example

non-smoker **0** - smoker **1**

age under 50 **0** - age over 50 **1**

no lung cancer **0** - lung cancer **1**

Smoker	Age	Lung cancer
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1



Causal Discovery for Time-series Data

The PC and FCI causal discovery method work well with discrete/categorical data.

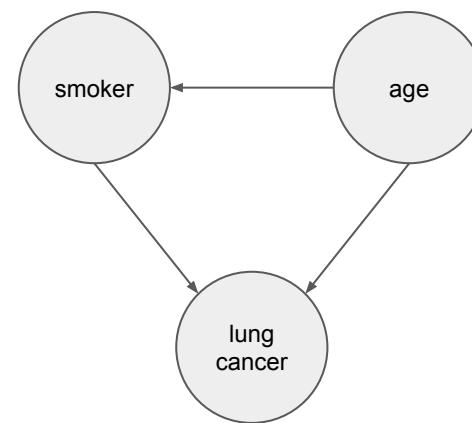
example

non-smoker **0** - smoker **1**

age under 50 **0** - age over 50 **1**

no lung cancer **0** - lung cancer **1**

Smoker	Age	Lung cancer
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1



Causal Discovery for Time-series Data

The PC and FCI causal discovery method work well with discrete/categorical data.

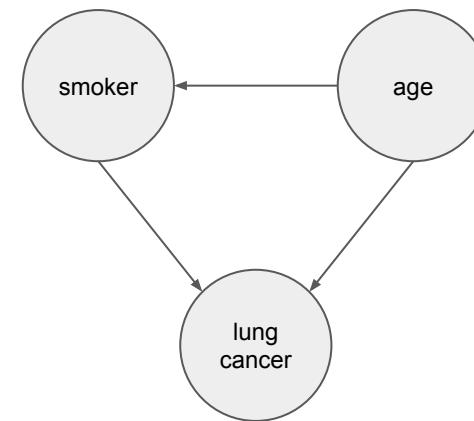
example

non-smoker **0** - smoker **1**

age under 50 **0** - age over 50 **1**

no lung cancer **0** - lung cancer **1**

Smoker	Age	Lung cancer
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1



Causal Discovery for Time-series Data

The PC and FCI causal discovery method work well with discrete/categorical data.

example

non-smoker **0** - smoker **1**

age under 50 **0** - age over 50 **1**

no lung cancer **0** - lung cancer **1**

The order is not important

Smoker	Age	Lung cancer
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

=

Smoker	Age	Lung cancer
1	1	0
1	1	1
1	0	0
1	0	1
0	1	0
0	1	1
0	0	0
0	0	1

Causal Discovery for Time-series Data

The PC and FCI causal discovery method work well with discrete/categorical data.

example

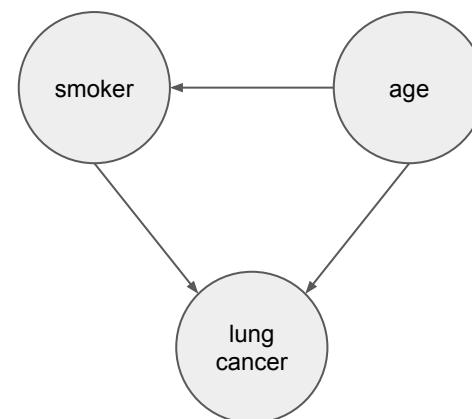
non-smoker **0** - smoker **1**

age under 50 **0** - age over 50 **1**

no lung cancer **0** - lung cancer **1**

Time	Smoker	Age	Lung cancer
0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1
6	1	1	0
7	1	1	1

What if our data is time-dependent?



Causal Discovery for Time-series Data

The PC and FCI causal discovery method work well with discrete/categorical data.

example

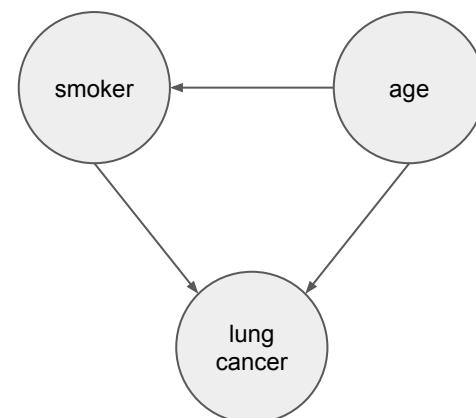
non-smoker **0** - smoker **1**

age under 50 **0** - age over 50 **1**

no lung cancer **0** - lung cancer **1**

Time	Smoker	Age	Lung cancer
0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1
6	1	1	0
7	1	1	1

What if our data is time-dependent?



We cannot only consider the contemporaneous relationships

Causal Discovery for Time-series Data

The PC and FCI causal discovery method work well with discrete/categorical data.

example

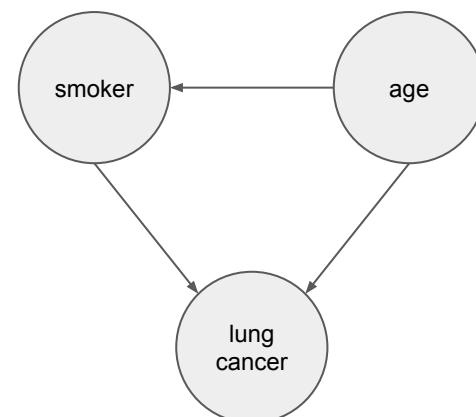
non-smoker **0** - smoker **1**

age under 50 **0** - age over 50 **1**

no lung cancer **0** - lung cancer **1**

Time	Smoker	Age	Lung cancer
0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1
6	1	0	0
7	1	1	1

What if our data is time-dependent?



We cannot only consider the contemporaneous relationships

Causal Discovery for Time-series Data

The PC and FCI causal discovery method work well with discrete/categorical data.

example

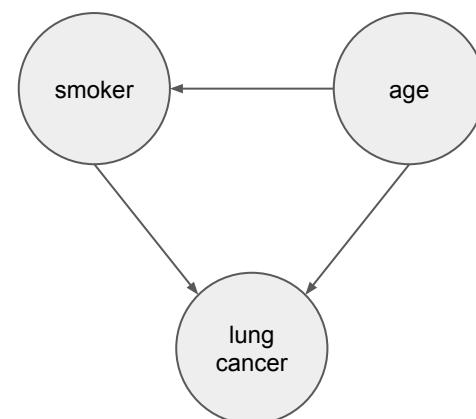
non-smoker **0** - smoker **1**

age under 50 **0** - age over 50 **1**

no lung cancer **0** - lung cancer **1**

Time	Smoker	Age	Lung cancer
0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1
6	1	0	0
7	1	1	1

What if our data is time-dependent?



We cannot only consider the contemporaneous relationships

Causal Discovery for Time-series Data

The PC and FCI causal discovery method work well with discrete/categorical data.

example

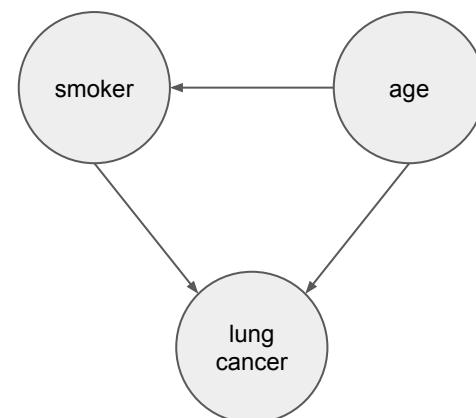
non-smoker **0** - smoker **1**

age under 50 **0** - age over 50 **1**

no lung cancer **0** - lung cancer **1**

Time	Smoker	Age	Lung cancer
0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1
6	1	1	0
7	1	1	1

What if our data is time-dependent?



We cannot only consider the contemporaneous relationships

Causal Discovery for Time-series Data

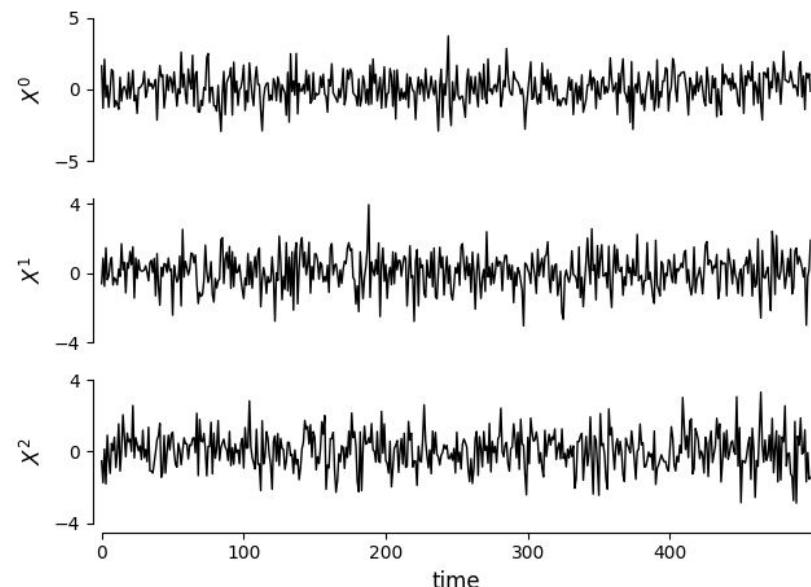
The PC and FCI causal discovery method work well with discrete/categorical data.

What if we deal with time-series data?

PC/FCI is inappropriate to use with time series data due to:

- time ordering
- lagged dependencies
- high false positive rates due to the autocorrelation

$$\begin{cases} X_t^0 = 0.2(X_{t-1}^1)^2 + \eta_t^0 \\ X_t^1 = \eta_t^1 \\ X_t^2 = 0.3(X_{t-2}^1)^2 + \eta_t^2 \end{cases}$$



Outline

- Causal Discovery for Time-series Data
 - **PCMCI algorithm**
- Robotics Applications
 - F-PCMCI algorithm
 - ROS-Causal

Causal Discovery for Time-series Data

PCMCI algorithm

It consists of two main steps:

- **PC algorithm**

retrieves the causal model structure by considering ONLY lagged dependencies as possible causal relationships between variables

- **MCI test**

validates the structure found at the previous step by performing a false positive rate optimisation control

$$X_{t-\tau}^i \perp\!\!\!\perp X_t^j | \tilde{P}(X_{t-\tau}^i), \tilde{P}(X_t^j)$$

Key parameter: \mathcal{T} maximum time delay

Causal Discovery for Time-series Data

PCMCI algorithm

It consists of two main steps:

- **PC algorithm**

retrieves the causal model structure by considering ONLY lagged dependencies as possible causal relationships between variables

X

- **MCI test**

validates the structure found at the previous step by performing a false positive rate optimisation control

Y

Z

W

$$X_{t-\tau}^i \perp\!\!\!\perp X_t^j | \tilde{P}(X_{t-\tau}^i), \tilde{P}(X_t^j)$$

Key parameter: \mathcal{T} maximum time delay

Causal Discovery for Time-series Data

PCMCI algorithm

It consists of two main steps:

- **PC algorithm**

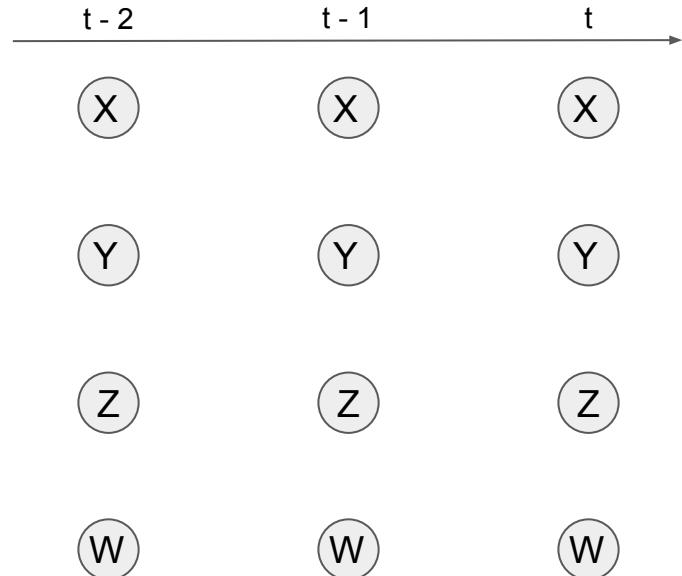
retrieves the causal model structure by considering ONLY lagged dependencies as possible causal relationships between variables

- **MCI test**

validates the structure found at the previous step by performing a false positive rate optimisation control

$$X_{t-\tau}^i \perp\!\!\!\perp X_t^j \mid \tilde{P}(X_{t-\tau}^i), \tilde{P}(X_t^j)$$

Key parameter: \mathcal{T} maximum time delay



Causal Discovery for Time-series Data

PCMCI algorithm

It consists of two main steps:

- **PC algorithm**

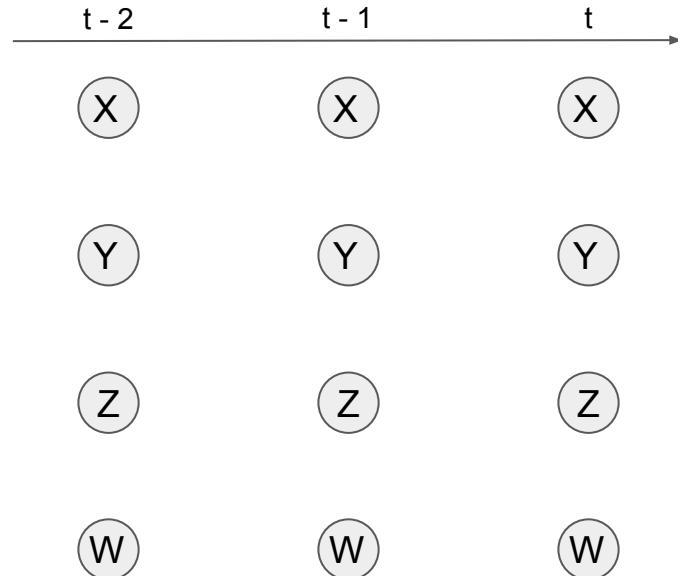
retrieves the causal model structure by considering ONLY lagged dependencies as possible causal relationships between variables

- **MCI test**

validates the structure found at the previous step by performing a false positive rate optimisation control

$$X_{t-\tau}^i \perp\!\!\!\perp X_t^j \mid \tilde{P}(X_{t-\tau}^i), \tilde{P}(X_t^j)$$

Key parameter: \mathcal{T} maximum time delay



Causal Discovery for Time-series Data

PCMCI algorithm

It consists of two main steps:

- **PC algorithm**

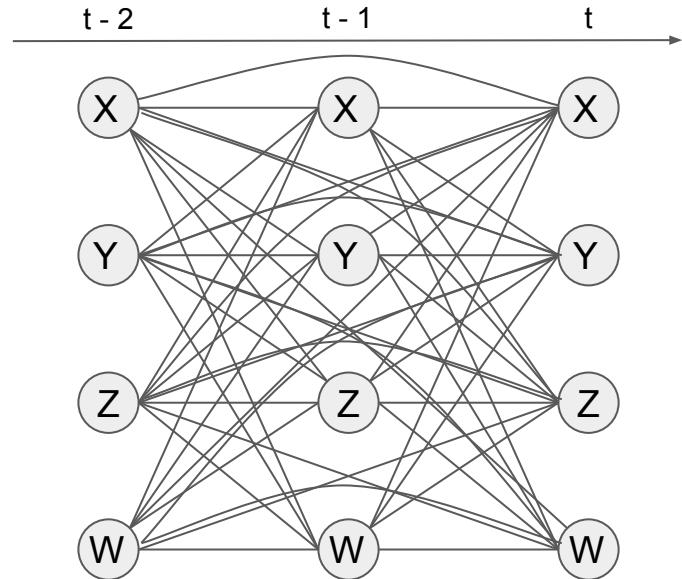
retrieves the causal model structure by considering ONLY lagged dependencies as possible causal relationships between variables

- **MCI test**

validates the structure found at the previous step by performing a false positive rate optimisation control

$$X_{t-\tau}^i \perp\!\!\!\perp X_t^j \mid \tilde{P}(X_{t-\tau}^i), \tilde{P}(X_t^j)$$

Key parameter: \mathcal{T} maximum time delay



Causal Discovery for Time-series Data

PCMCI algorithm

It consists of two main steps:

- **PC algorithm**

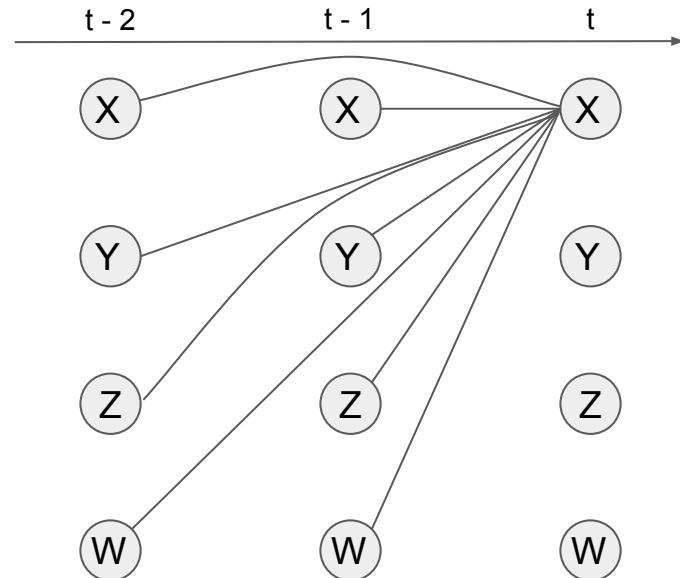
retrieves the causal model structure by considering ONLY lagged dependencies as possible causal relationships between variables

- **MCI test**

validates the structure found at the previous step by performing a false positive rate optimisation control

$$X_{t-\tau}^i \perp\!\!\!\perp X_t^j \mid \tilde{P}(X_{t-\tau}^i), \tilde{P}(X_t^j)$$

Key parameter: \mathcal{T} maximum time delay



Causal Discovery for Time-series Data

PCMCI algorithm

It consists of two main steps:

- **PC algorithm**

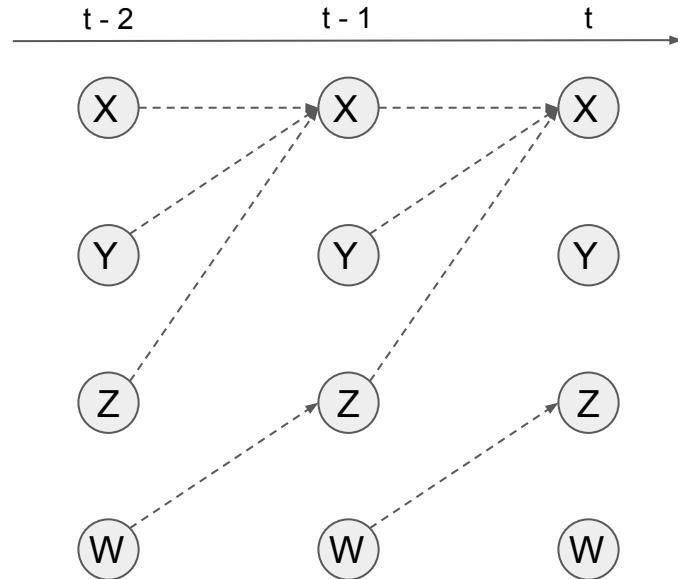
retrieves the causal model structure by considering ONLY lagged dependencies as possible causal relationships between variables

- **MCI test**

validates the structure found at the previous step by performing a false positive rate optimisation control

$$X_{t-\tau}^i \perp\!\!\!\perp X_t^j \mid \tilde{P}(X_{t-\tau}^i), \tilde{P}(X_t^j)$$

Key parameter: \mathcal{T} maximum time delay



Causal Discovery for Time-series Data

PCMCI algorithm

It consists of two main steps:

- **PC algorithm**

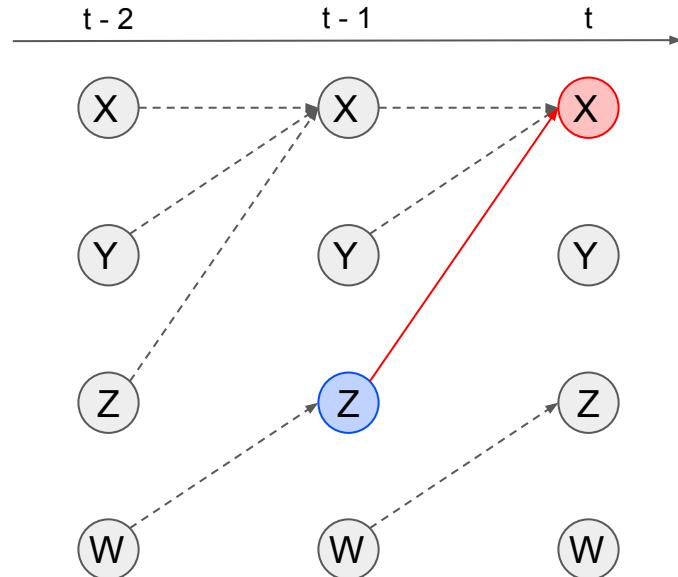
retrieves the causal model structure by considering ONLY lagged dependencies as possible causal relationships between variables

- **MCI test**

validates the structure found at the previous step by performing a false positive rate optimisation control

$$X_{t-\tau}^i \perp\!\!\!\perp X_t^j \mid \tilde{P}(X_{t-\tau}^i), \tilde{P}(X_t^j)$$

Key parameter: \mathcal{T} maximum time delay



Causal Discovery for Time-series Data

PCMCI algorithm

It consists of two main steps:

- **PC algorithm**

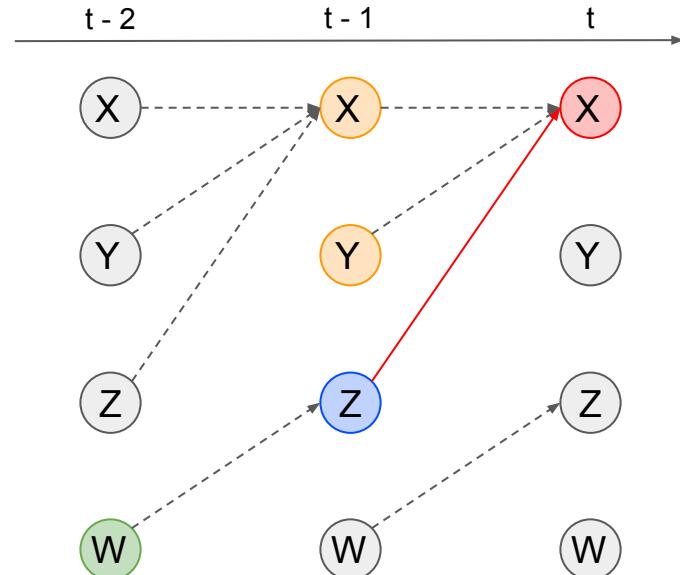
retrieves the causal model structure by considering ONLY lagged dependencies as possible causal relationships between variables

- **MCI test**

validates the structure found at the previous step by performing a false positive rate optimisation control

$$X_{t-\tau}^i \perp\!\!\!\perp X_t^j \mid \tilde{P}(X_{t-\tau}^i), \tilde{P}(X_t^j)$$

Key parameter: \mathcal{T} maximum time delay



Causal Discovery for Time-series Data

PCMCI algorithm

```
random_state = np.random.default_rng(seed=42)
data = random_state.standard_normal((500, 3))
for t in range(1, 500):
    data[t, 0] += 0.4*data[t-1, 1]**2
    data[t, 2] += 0.3*data[t-2, 1]**2
var_names = [r'$X^0$', r'$X^1$', r'$X^2$']

dataframe = pp.DataFrame(data, var_names=var_names)
```

```
gpdc = GPDC(significance='analytic', gp_params=None)
pcmci_gpdc = PCMCI(
    dataframe=dataframe,
    cond_ind_test=gpdc,
    verbosity=0)
```

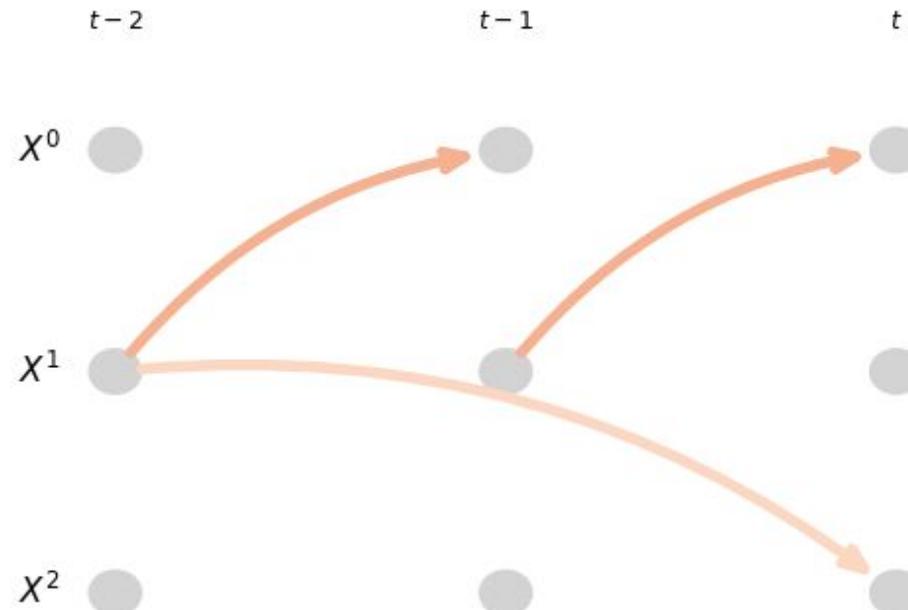
```
results = pcmci_gpdc.run_pcmci(tau_max=2, pc_alpha=0.1, alpha_level = 0.01)
tp.plot_graph(
    val_matrix=results['val_matrix'],
    graph=results['graph'],
    var_names=var_names,
    show_colorbar=False,
)
```

$$\begin{cases} X_t^0 = 0.4(X_{t-1}^1)^2 + \eta_t^0 \\ X_t^1 = \eta_t^1 \\ X_t^2 = 0.3(X_{t-2}^1)^2 + \eta_t^2 \end{cases}$$

Causal Discovery for Time-series Data

PCMCI algorithm

$$\left\{ \begin{array}{l} X_t^0 = 0.4(X_{t-1}^1)^2 + \eta_t^0 \\ X_t^1 = \eta_t^1 \\ X_t^2 = 0.3(X_{t-2}^1)^2 + \eta_t^2 \end{array} \right.$$



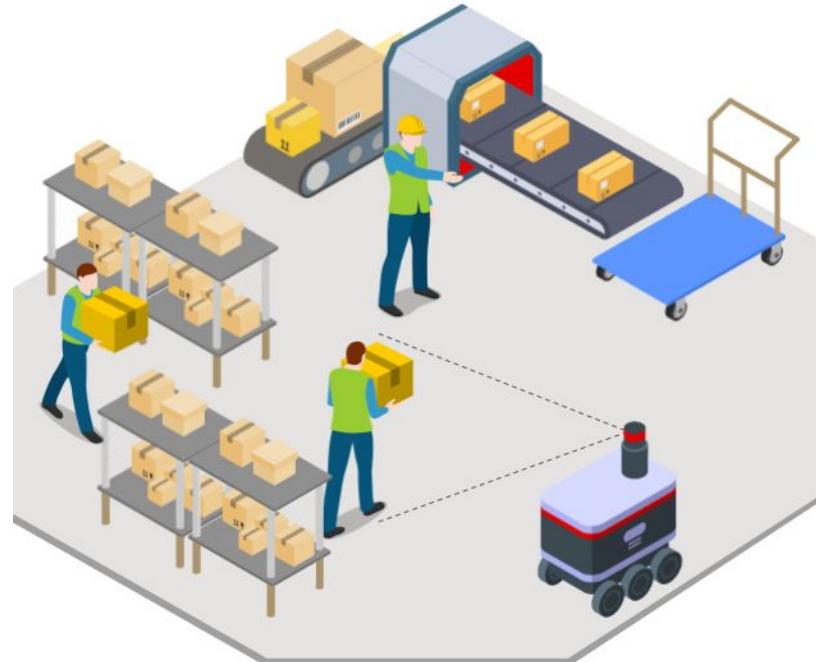
Outline

- Causal Discovery for Time-series Data
 - PCMCI algorithm
- **Robotics Applications**
 - F-PCMCI algorithm
 - ROS-Causal

Robotics Applications

Two main challenges in robotics:

- execution time of the causal discovery analysis
- conduct the causal discovery analysis online



Outline

- Causal Discovery for Time-series Data
 - PCMCI algorithm
- Robotics Applications
 - **F-PCMCI algorithm**
 - ROS-Causal

Robotics Applications

F-PCMCI algorithm

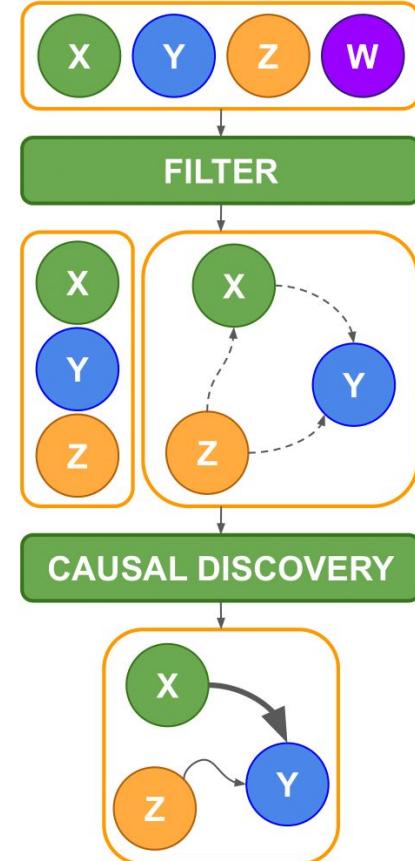
PCMCI computational cost depends on:

- the length of the time-series
- the number of variables

F-PCMCI steps:

- takes in input a prefixed set of variables
- the Transfer Entropy-based filter analyses and removes irrelevant variables (e.g., constants or isolated ones). The reduced variable set is used to create a hypothetical causal model
- the hypothetical causal model needs to be validated by a proper causal analysis, which is performed by PCMCI

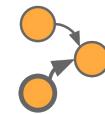
This strategy enables **faster** and **more accurate** causal discovery



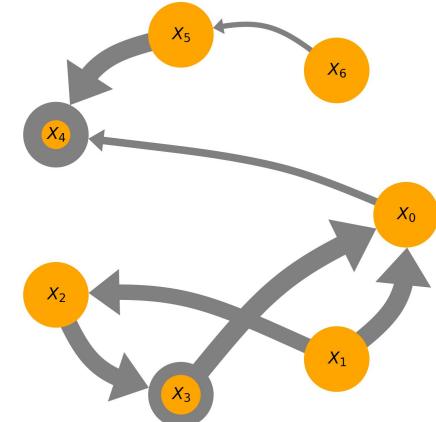
Robotics Applications

F-PCMCI algorithm

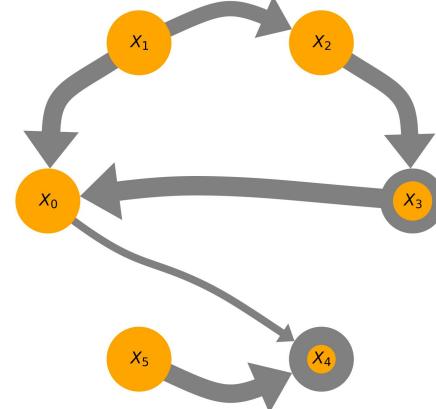
$$\left\{ \begin{array}{l} x_0(t) = 2x_1(t-1) + 3x_3(t-1) + \eta_0 \\ x_1(t) = \eta_1 \\ x_2(t) = 1.1x_1(t-1)^2 + \eta_2 \\ x_3(t) = x_3(t-1) \cdot x_2(t-1) + \eta_3 \\ x_4(t) = x_4(t-1) + x_5(t-1) \cdot x_0(t-1) + \eta_4 \\ x_5(t) = \eta_5 \\ x_6(t) = \eta_6 \end{array} \right.$$



PCMCI



F-PCMCI

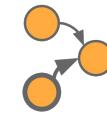


Robotics Applications

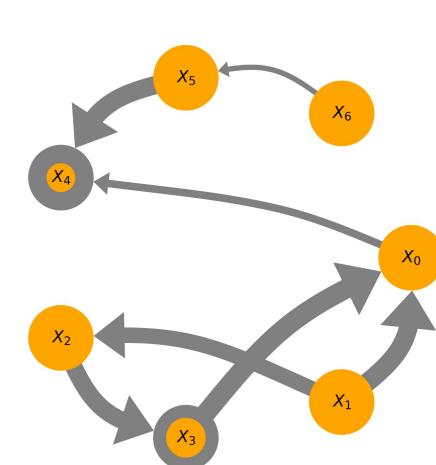
F-PCMCI algorithm

$$\left\{
 \begin{array}{l}
 x_0(t) = 2x_1(t-1) + 3x_3(t-1) + \eta_0 \\
 x_1(t) = \eta_1 \\
 x_2(t) = 1.1x_1(t-1)^2 + \eta_2 \\
 x_3(t) = x_3(t-1) \cdot x_2(t-1) + \eta_3 \\
 x_4(t) = x_4(t-1) + x_5(t-1) \cdot x_0(t-1) + \eta_4 \\
 x_5(t) = \eta_5 \\
 x_6(t) = \eta_6
 \end{array}
 \right.$$

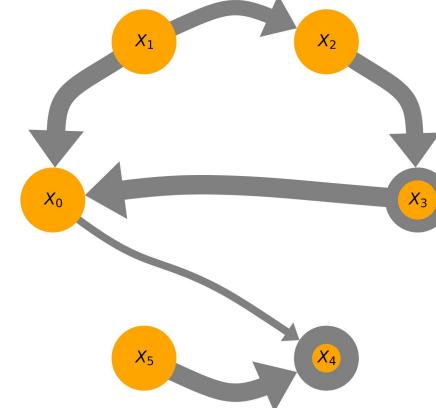
Isolated



PCMCI



F-PCMCI

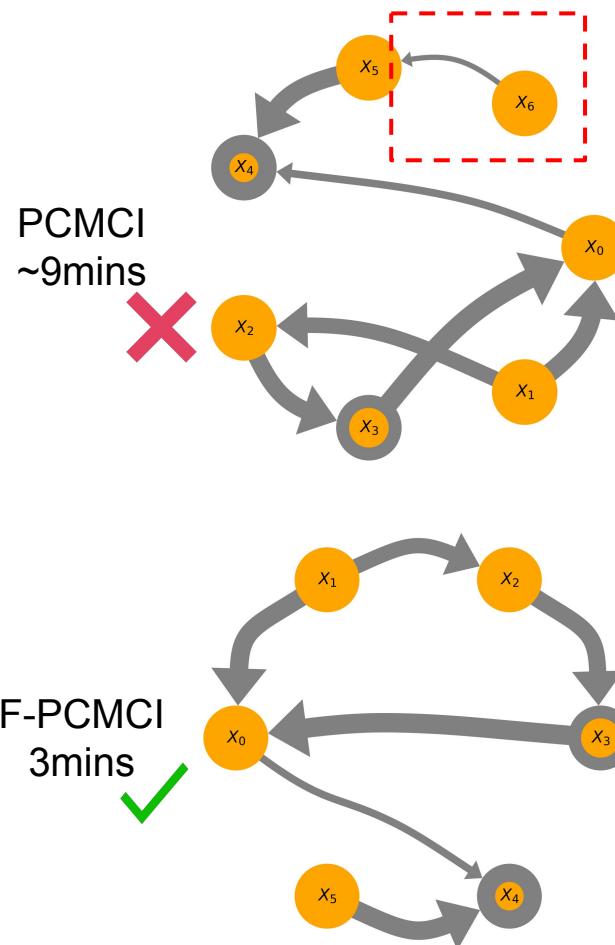


Robotics Applications

F-PCMCI algorithm

$$\left\{
 \begin{array}{l}
 x_0(t) = 2x_1(t-1) + 3x_3(t-1) + \eta_0 \\
 x_1(t) = \eta_1 \\
 x_2(t) = 1.1x_1(t-1)^2 + \eta_2 \\
 x_3(t) = x_3(t-1) \cdot x_2(t-1) + \eta_3 \\
 x_4(t) = x_4(t-1) + x_5(t-1) \cdot x_0(t-1) + \eta_4 \\
 x_5(t) = \eta_5 \\
 x_6(t) = \eta_6
 \end{array}
 \right.$$

Isolated

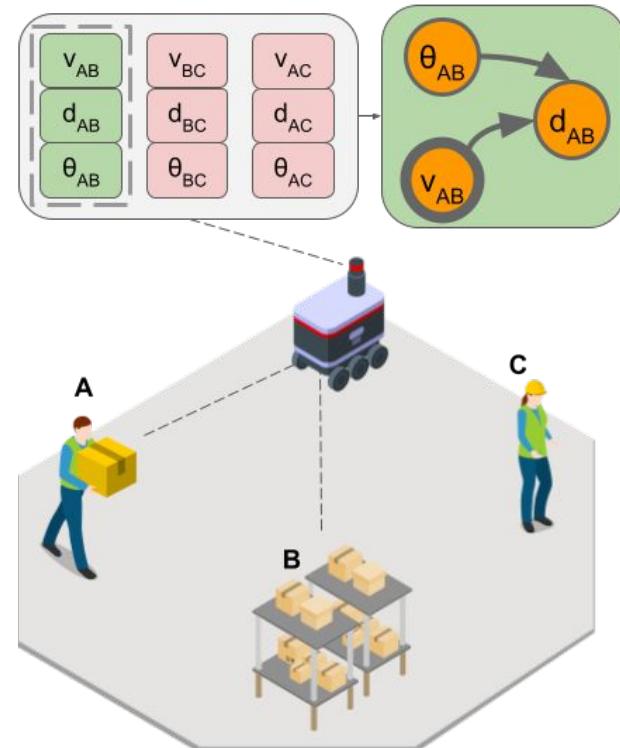


Considering the interaction scenario modelled by three variables

- v_{ij} : relative velocity between agent i and j
- d_{ij} : distance between agent i and j
- θ_{ij} : angle between agent i and j

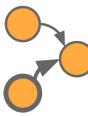
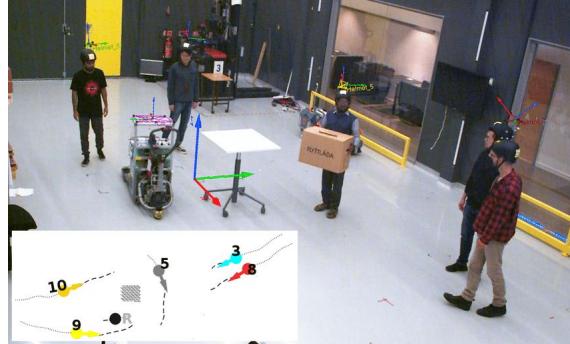
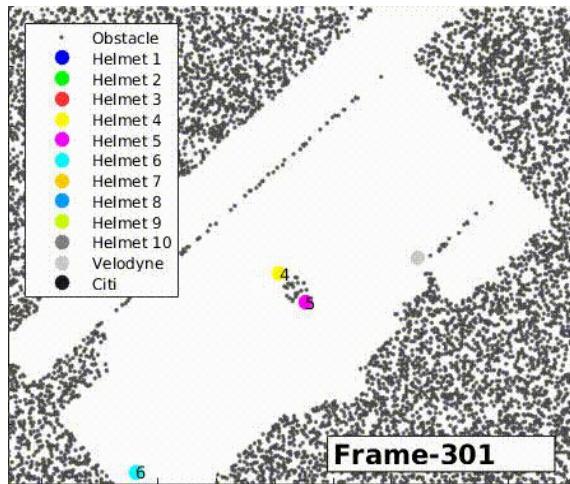
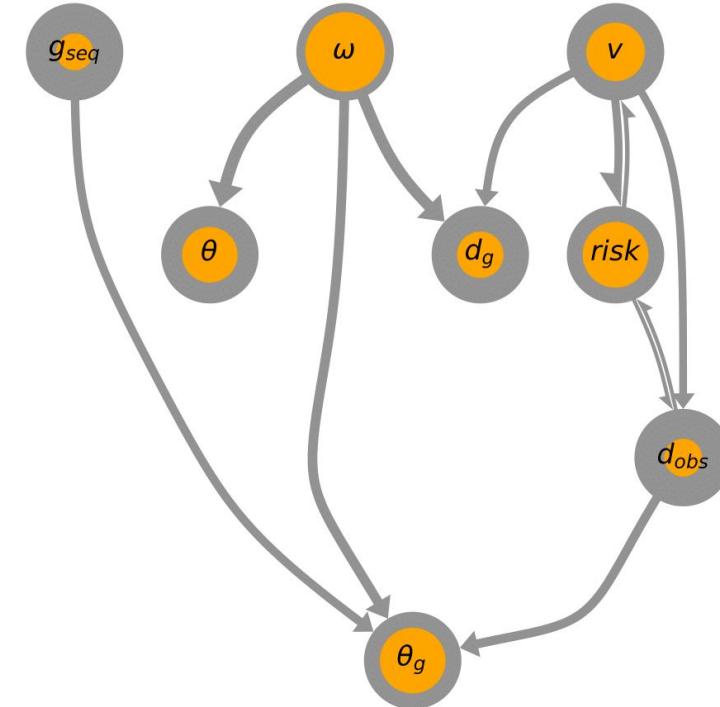
Are all the observable variables useful to understand the observed scenario?

We need to filter the variables before conducting the causal analysis



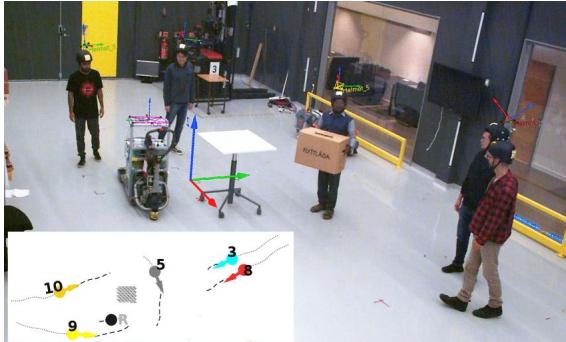
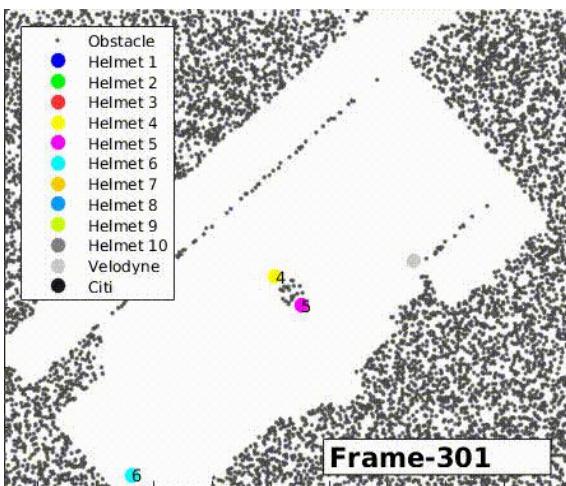
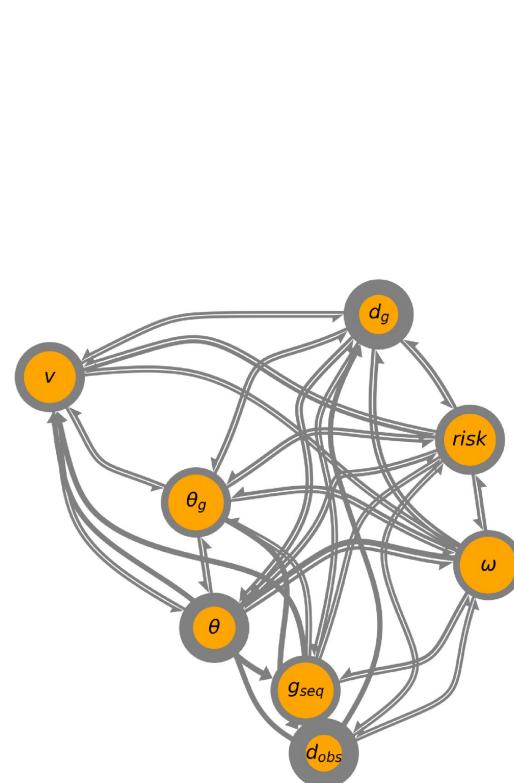
Robotics Applications

F-PCMCI algorithm

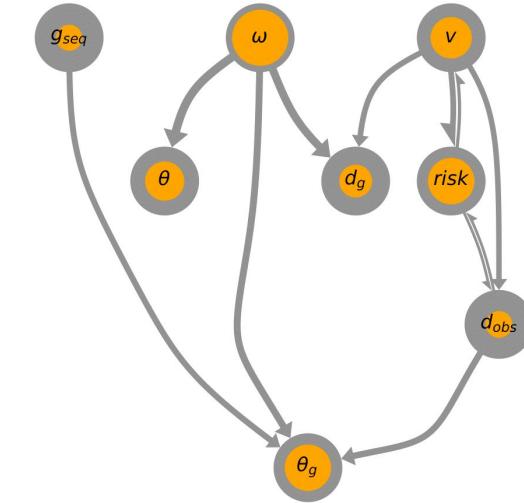


Robotics Applications

F-PCMCI algorithm



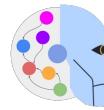
PCMCI ~ 80 mins



F-PCMCI ~ 18 mins

Outline

- Causal Discovery for Time-series Data
 - PCMCI algorithm
- Robotics Applications
 - F-PCMCI algorithm
 - **ROS-Causal**

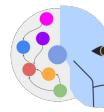


What is Robot Operating System (ROS)?

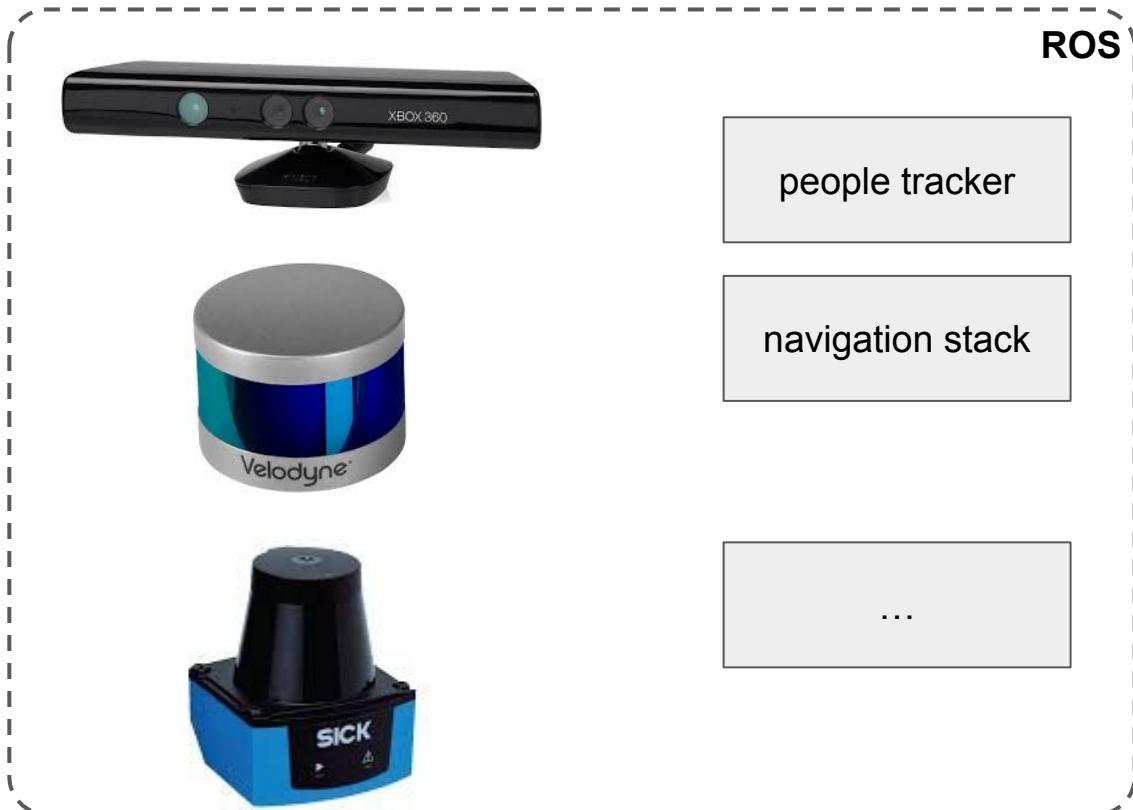
people tracker

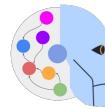
navigation stack

...

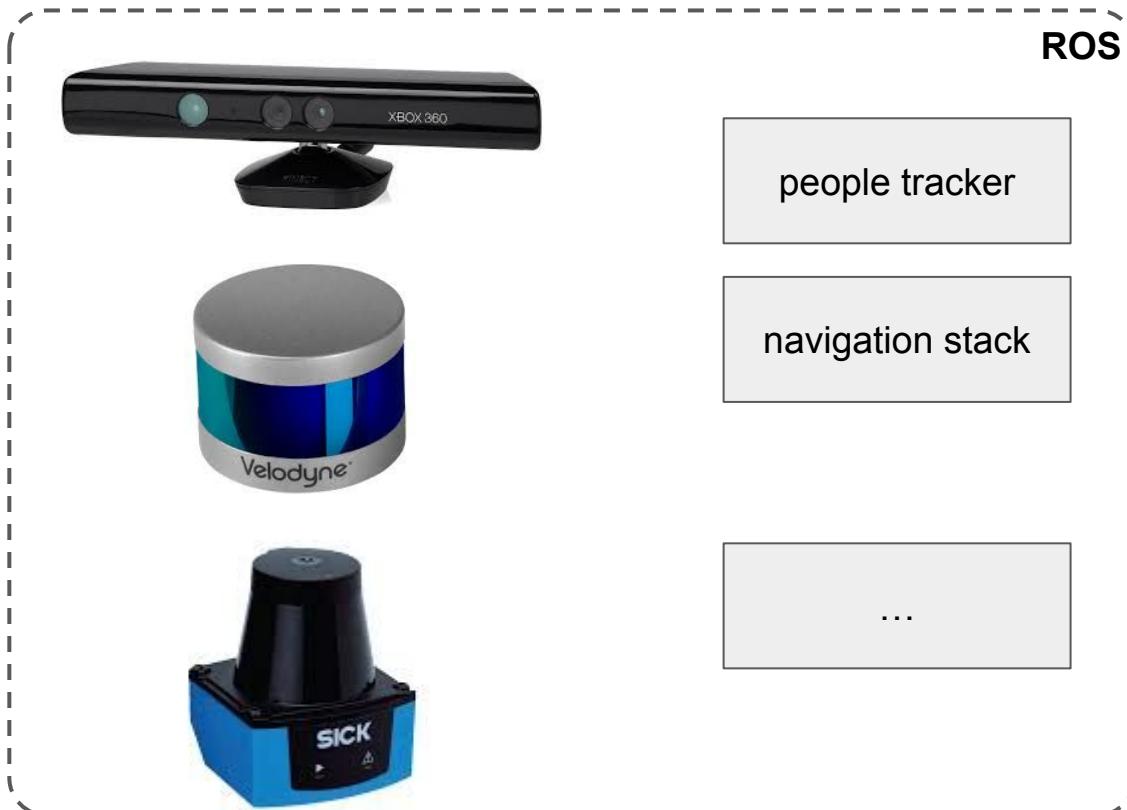


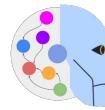
What is Robot Operating System (ROS)?



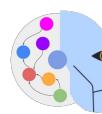
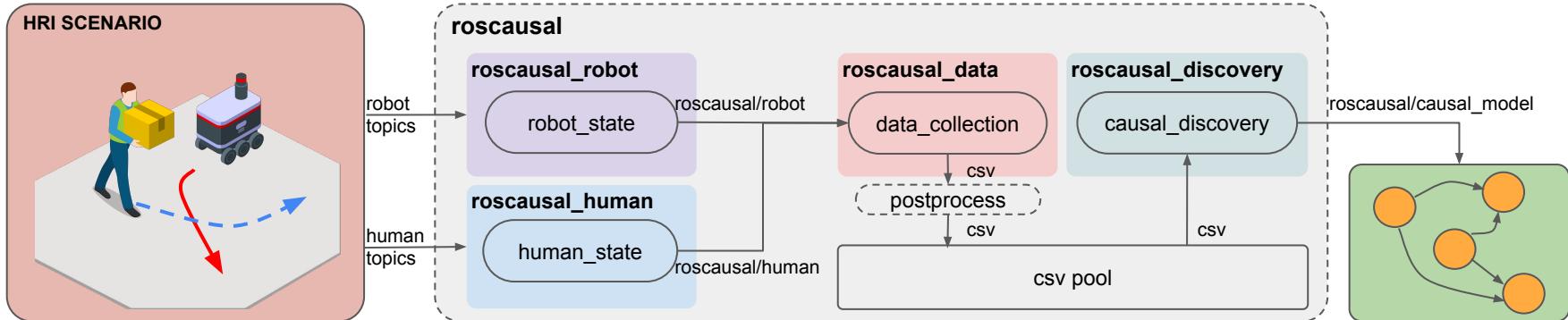


What is Robot Operating System (ROS)?

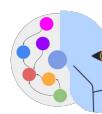
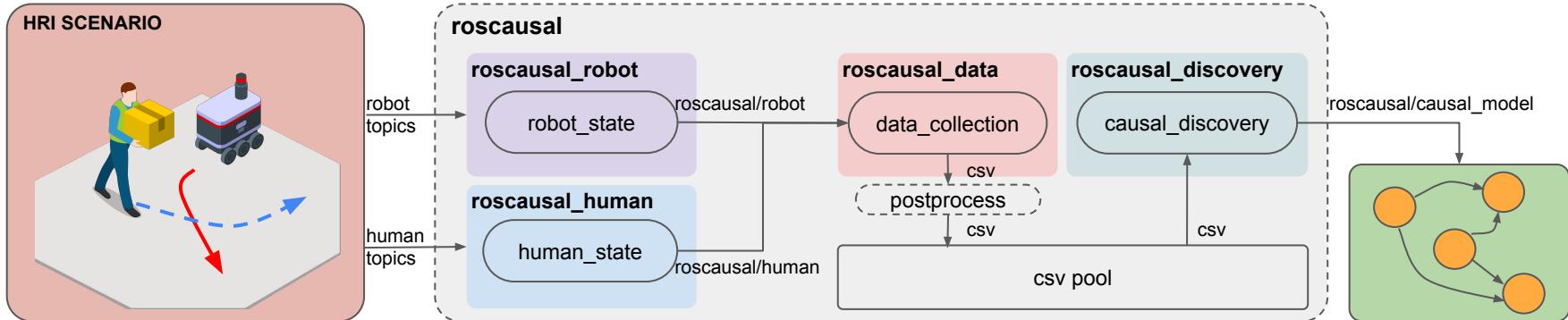




What is Robot Operating System (ROS)?



- ROS-Causal extracts and collects data from a HRI scenario, such as agents' trajectories, and performs causal analysis on the collected data in a batched manner. It is composed by four different rosnodes:
 - roascausal_robot
 - roascausal_human
 - roascausal_data
 - roascausal_discovery

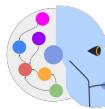


roascausal_robot: collects data from several rostopics related to the robot (e.g., position, velocity, target position, etc.), and merge them into a single rostopic: *roscausal/robot*

roascausal_human: collects data from several rostopics related to the human (e.g., position, velocity, target position, etc.), and merge them into a single rostopic: *roscausal/human*

roascausal_data: subscribes to the topics */roscausal/robot* and */roscausal/human* and begins collecting data in a CSV file. Once the desired time-series length (rosparam) is reached, the node provides the option to post-process the data and finally saves the CSV file into a designated folder.

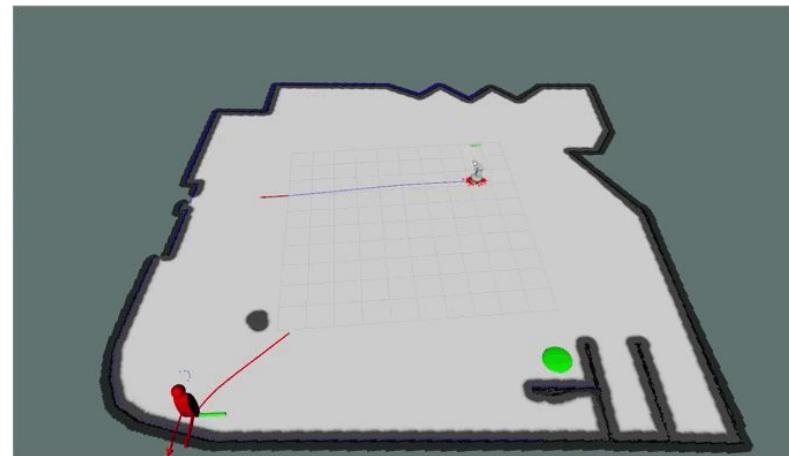
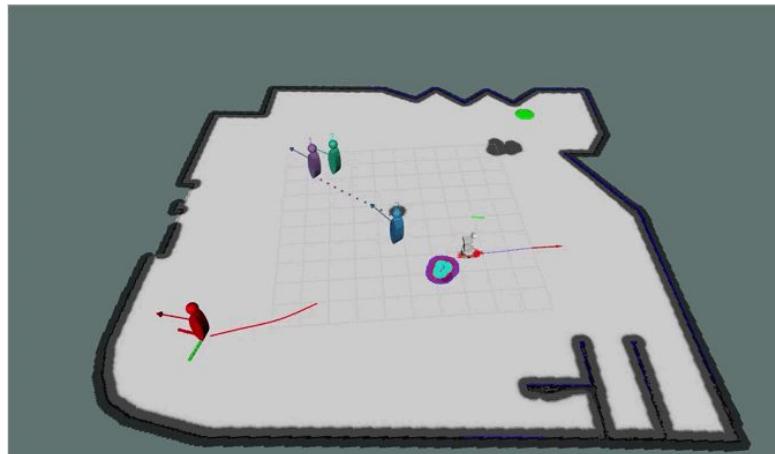
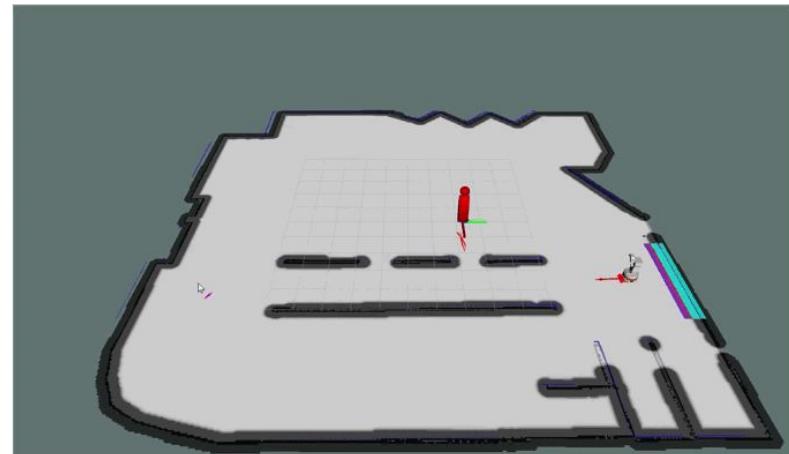
roascausal_discovery: performs causal discovery analysis on the collected data and publishes the result on the *roscausal/causal_model* rostopic. So far, it incorporates two causal discovery methods: PCMCI and F-PCMCI.



ROS-Causal_HRISim

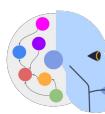
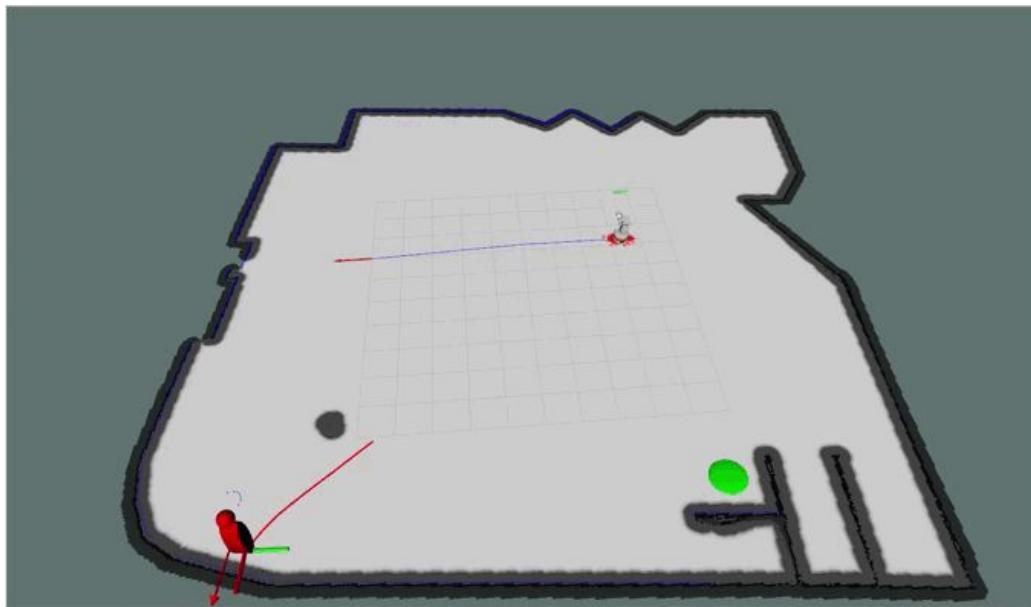
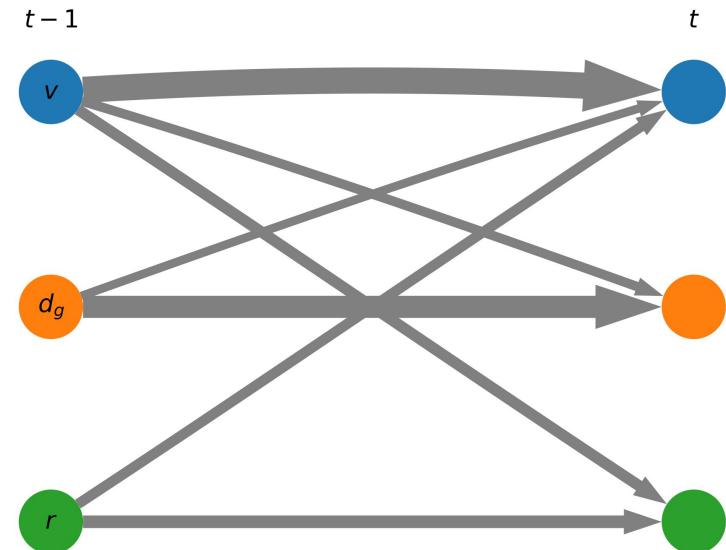
HRI simulator involving:

- TIAGo robot
- pedestrians



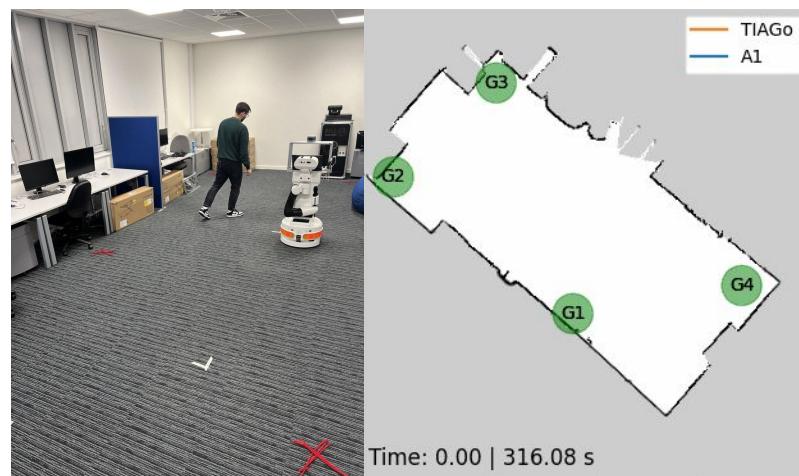
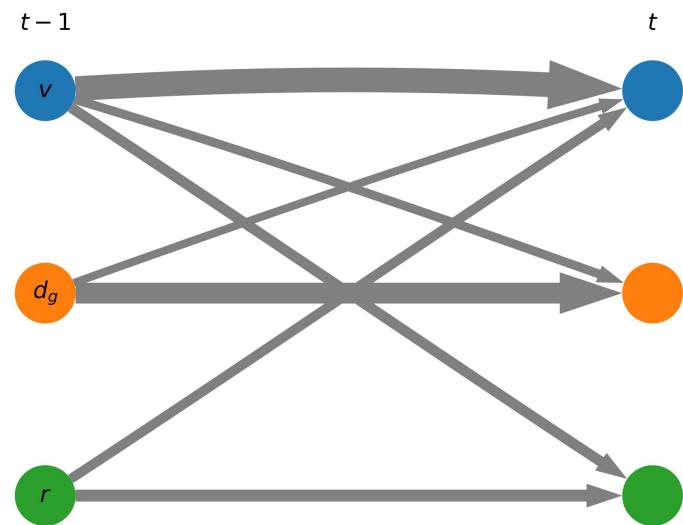
Robotics Applications

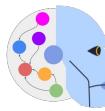
ROS-Causal



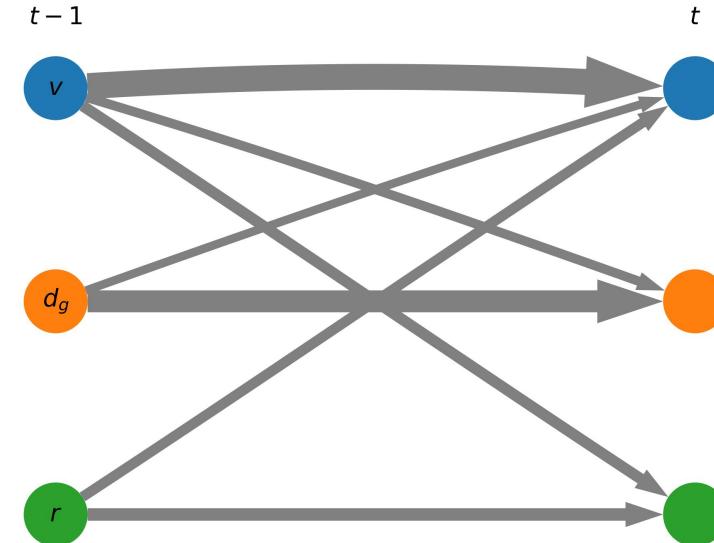
Robotics Applications

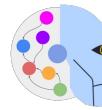
ROS-Causal





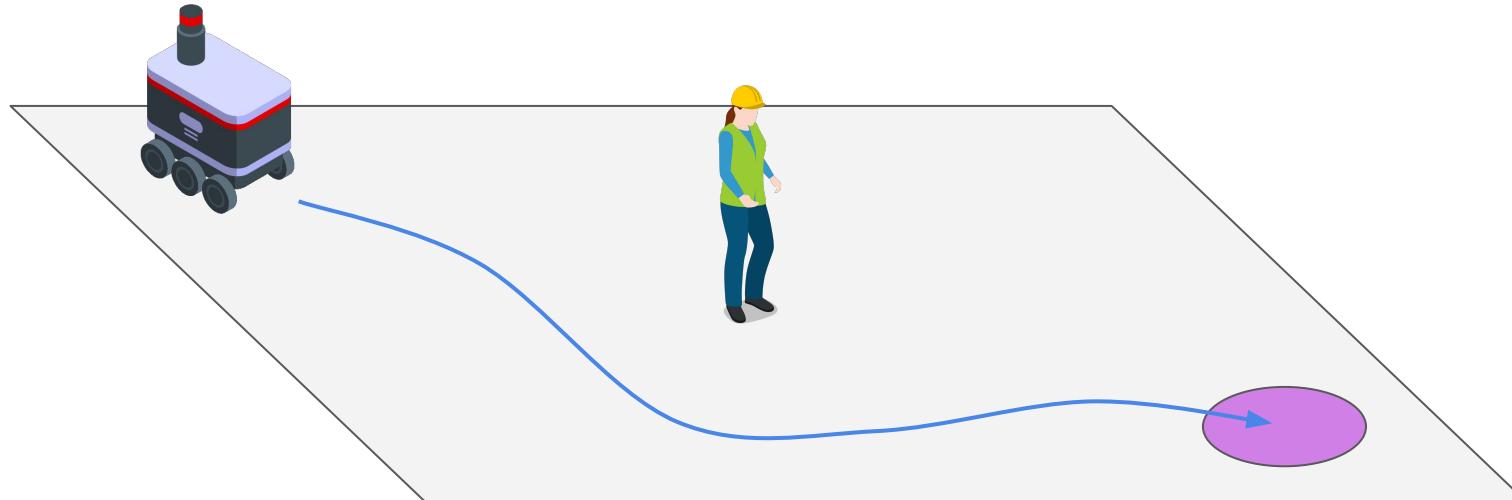
- What can a reconstructed causal model be useful for?
 - Prediction
 - Motion planning
 - Decision making

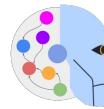




- What can a reconstructed causal model be useful for?
 - Prediction
 - Motion planning
 - Decision making

Trajectory generated by a planner not accounting for human reaction to robot's actions



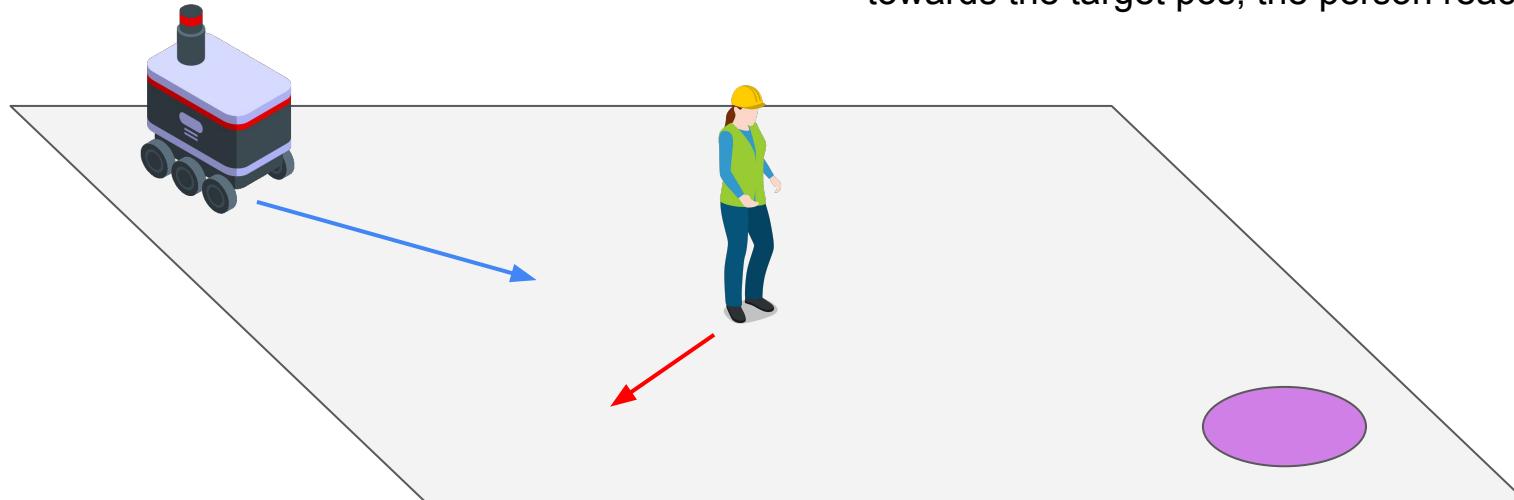


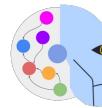
- What can a reconstructed causal model be useful for?
 - Prediction
 - Motion planning
 - Decision making

Trajectory generated by a planner not accounting for human reaction to robot's actions

But

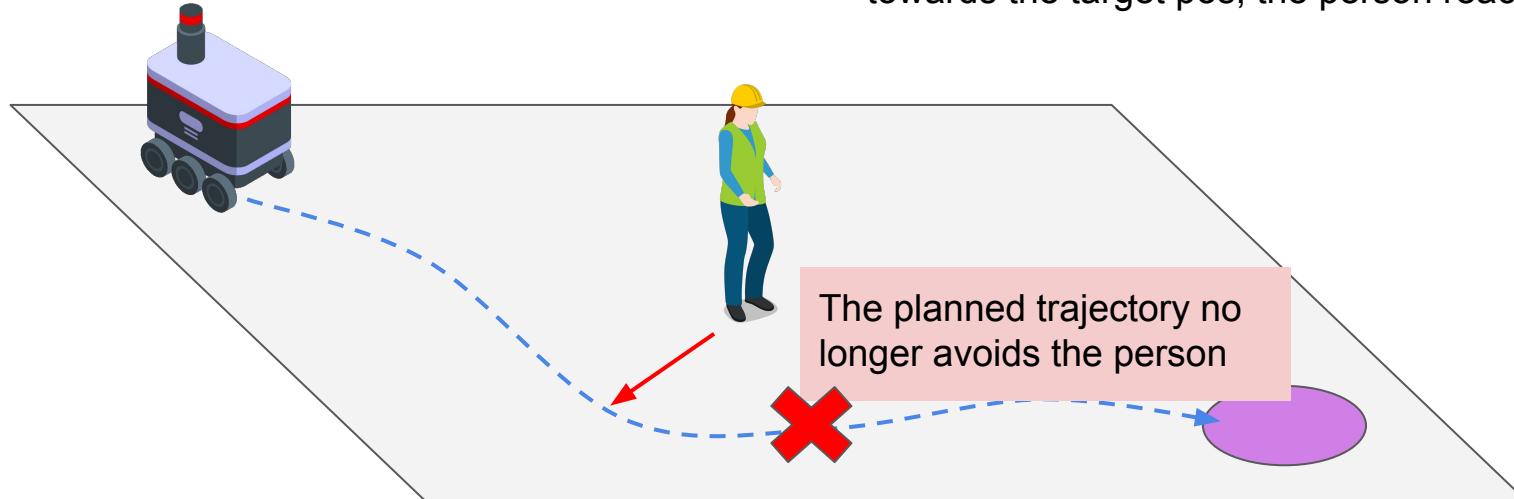
What if, as soon as the robot starts moving towards the target pos, the person reacts?





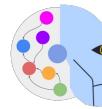
- What can a reconstructed causal model be useful for?
 - Prediction
 - Motion planning
 - Decision making

Trajectory generated by a planner not accounting for human reaction to robot's actions



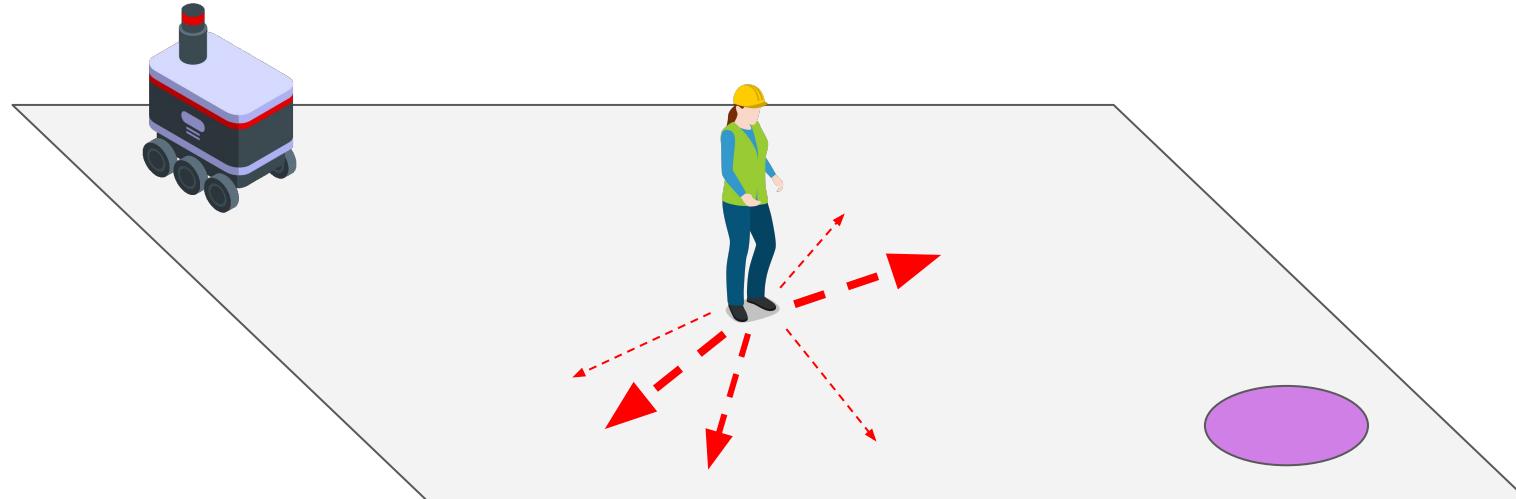
But

What if, as soon as the robot starts moving towards the target pos, the person reacts?



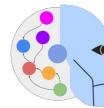
- What can a reconstructed causal model be useful for?
 - Prediction
 - Motion planning
 - Decision making

Trajectory generated by a planner not accounting for human reaction to robot's actions



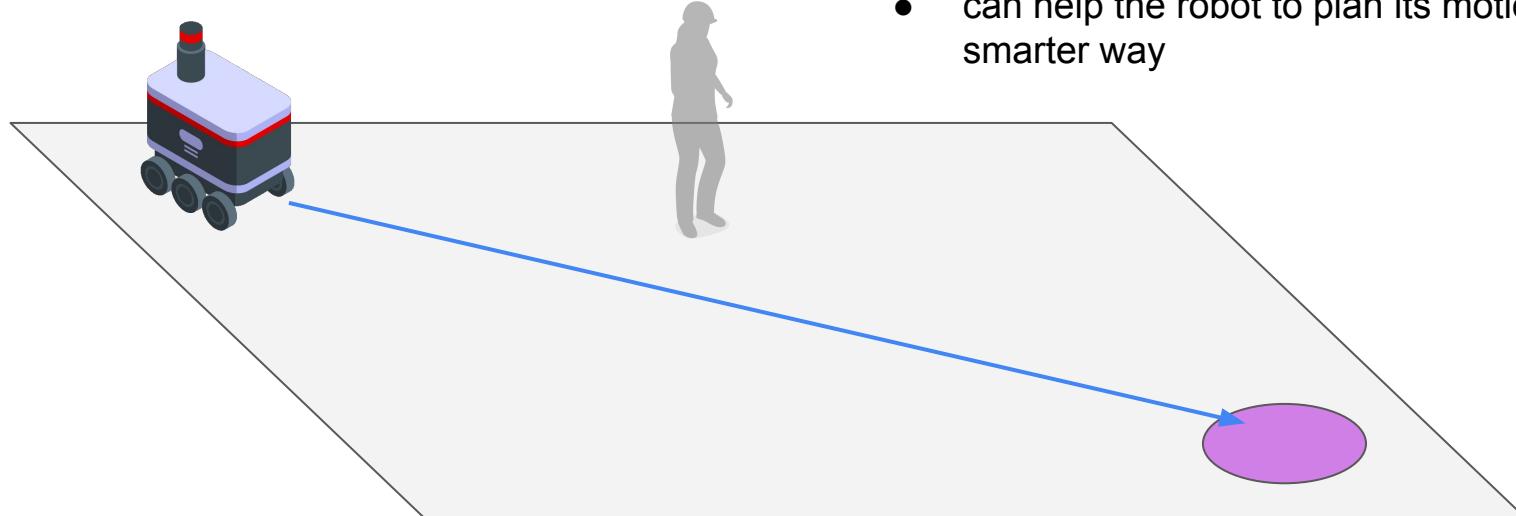
Knowing the causal model

- can facilitate the prediction of the person spatial behaviours



- What can a reconstructed causal model be useful for?
 - Prediction
 - Motion planning
 - Decision making

Trajectory generated by a planner not accounting for human reaction to robot's actions



Knowing the causal model

- can facilitate the prediction of the person spatial behaviours
- can help the robot to plan its motion in a smarter way

Reference

- Runge, J., Nowack, P., Kretschmer, M., Flaxman, S. and Sejdinovic, D., 2019. Detecting and quantifying causal associations in large nonlinear time series datasets. *Science advances*, 5(11).
- Castri, L., Mghames, S., Hanheide, M. and Bellotto, N., 2023. Enhancing Causal Discovery from Robot Sensor Data in Dynamic Scenarios. In 2nd Conference on Causal Learning and Reasoning.
- Castri, L., Beraldo, G., Mghames, S., Hanheide, M. and Bellotto, N., 2024. ROS-Causal: A ROS-based Causal Analysis Framework for Human-Robot Interaction Applications, Workshop on Causal Learning for Human-Robot Interaction (Causal-HRI), ACM/IEEE International Conference on Human-Robot Interaction (HRI).
- Castri, L., Beraldo, G., Mghames, S., Hanheide M. and Bellotto, N. 2024. Experimental Evaluation of ROS-Causal in Real-World Human-Robot Spatial Interaction Scenarios. In IEEE International Conference on Robot and Human Interactive Communication (RO-MAN).

PCMCI

F-PCMCI

ROS-Causal

Thank you, questions?

Research topics

- Conditional independence test for mixed data (linear and nonlinear)

$$\left\{ \begin{array}{l} X_t^0 = 0.2(X_{t-1}^1)^2 + \eta_t^0 \\ X_t^1 = \eta_t^1 \\ X_t^2 = \begin{cases} 0 & \text{if } X_{t-1}^1 \leq 0 \\ 1 & \text{if } 0 < X_{t-1}^1 \leq 10 \\ 2 & \text{if } X_{t-1}^1 > 10 \end{cases} \end{array} \right.$$

How can we test for independence between continuous and categorical data in the time-series domain?

- From tigramite (<https://github.com/jakobrunge/tigramite>): RegressionCI - mixed datasets with univariate discrete/categorical and (linear) continuous variables
- Zan, Lei, et al. "A conditional mutual information estimator for mixed data and an associated conditional independence test." Entropy 24.9 (2022): 1234.