

Causal Discovery for Time-Series Data

Outline

- **Causal Discovery for Time-series Data**
 - PCMCI algorithm
- Robotics Applications
 - F-PCMCI algorithm
 - CAnDOIT algorithm
 - CausalFlow
 - ROS-Causal

Causal Discovery for Time-series Data

The PC and FCI causal discovery methods work well with discrete/categorical data.

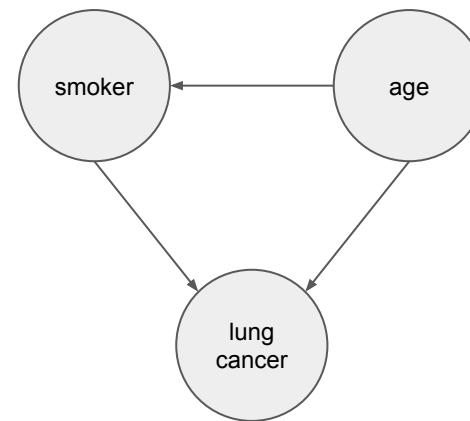
example

non-smoker **0** - smoker **1**

age under 50 **0** - age over 50 **1**

no lung cancer **0** - lung cancer **1**

Smoker	Age	Lung cancer
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1



Causal Discovery for Time-series Data

The PC and FCI causal discovery methods work well with discrete/categorical data.

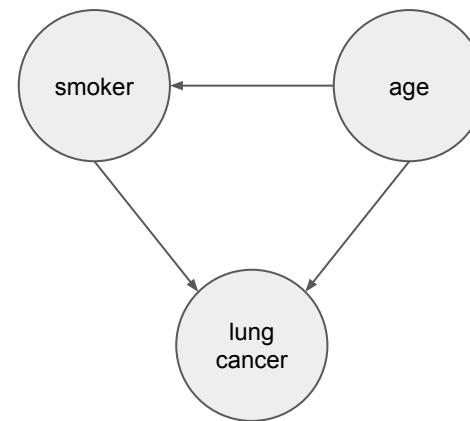
example

non-smoker **0** - smoker **1**

age under 50 **0** - age over 50 **1**

no lung cancer **0** - lung cancer **1**

Smoker	Age	Lung cancer
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1



Causal Discovery for Time-series Data

The PC and FCI causal discovery methods work well with discrete/categorical data.

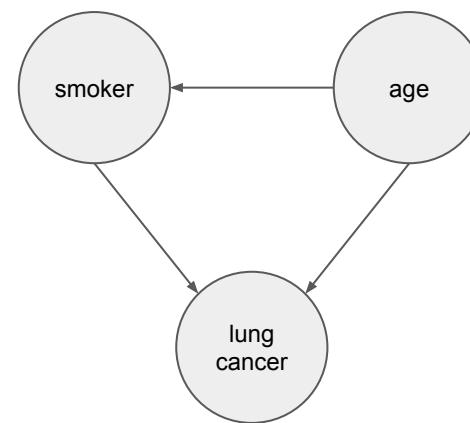
example

non-smoker **0** - smoker **1**

age under 50 **0** - age over 50 **1**

no lung cancer **0** - lung cancer **1**

Smoker	Age	Lung cancer
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1



Causal Discovery for Time-series Data

The PC and FCI causal discovery methods work well with discrete/categorical data.

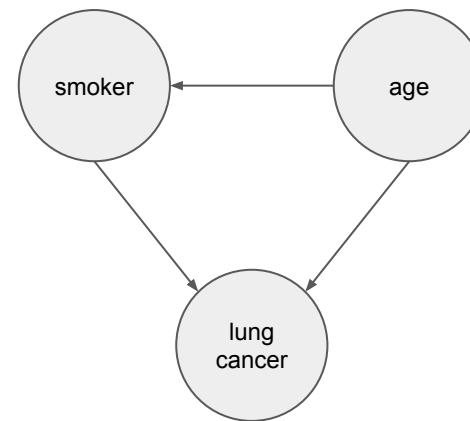
example

non-smoker **0** - smoker **1**

age under 50 **0** - age over 50 **1**

no lung cancer **0** - lung cancer **1**

Smoker	Age	Lung cancer
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1



Causal Discovery for Time-series Data

The PC and FCI causal discovery methods work well with discrete/categorical data.

example

non-smoker **0** - smoker **1**

age under 50 **0** - age over 50 **1**

no lung cancer **0** - lung cancer **1**

The order is not important

Smoker	Age	Lung cancer
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

=

Smoker	Age	Lung cancer
1	1	0
1	1	1
1	0	0
1	0	1
0	1	0
0	1	1
0	0	0
0	0	1

Causal Discovery for Time-series Data

The PC and FCI causal discovery methods work well with discrete/categorical data.

example

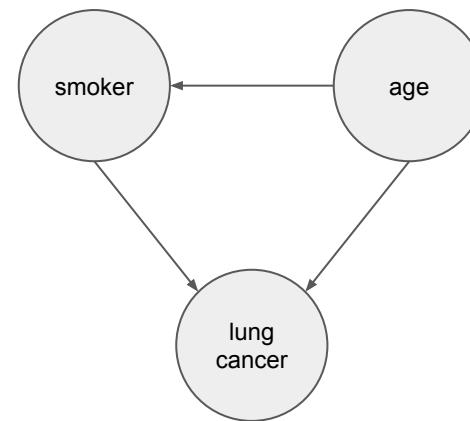
non-smoker **0** - smoker **1**

age under 50 **0** - age over 50 **1**

no lung cancer **0** - lung cancer **1**

Time	Smoker	Age	Lung cancer
0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1
6	1	1	0
7	1	1	1

What if our data is time-dependent?



Causal Discovery for Time-series Data

The PC and FCI causal discovery methods work well with discrete/categorical data.

example

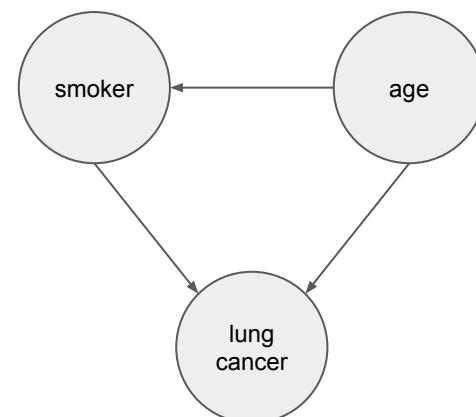
non-smoker **0** - smoker **1**

age under 50 **0** - age over 50 **1**

no lung cancer **0** - lung cancer **1**

Time	Smoker	Age	Lung cancer
0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1
6	1	1	0
7	1	1	1

What if our data is time-dependent?



We cannot only consider the contemporaneous relationships

Causal Discovery for Time-series Data

The PC and FCI causal discovery methods work well with discrete/categorical data.

example

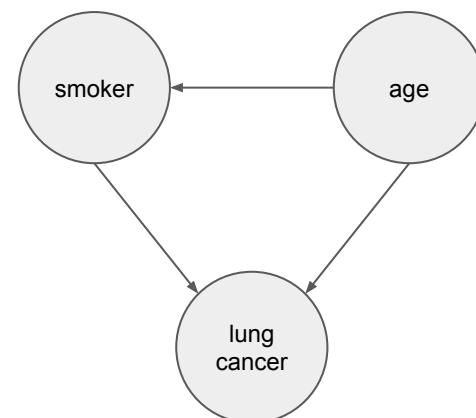
non-smoker **0** - smoker **1**

age under 50 **0** - age over 50 **1**

no lung cancer **0** - lung cancer **1**

What if our data is time-dependent?

Time	Smoker	Age	Lung cancer
0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1
6	1	0	0
7	1	1	1



We cannot only consider the contemporaneous relationships

Causal Discovery for Time-series Data

The PC and FCI causal discovery methods work well with discrete/categorical data.

example

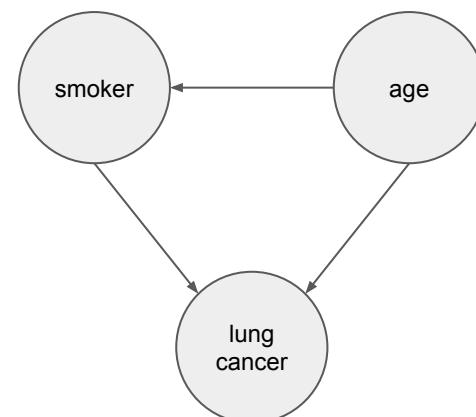
non-smoker **0** - smoker **1**

age under 50 **0** - age over 50 **1**

no lung cancer **0** - lung cancer **1**

Time	Smoker	Age	Lung cancer
0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1
6	1	0	0
7	1	1	1

What if our data is time-dependent?



We cannot only consider the contemporaneous relationships

Causal Discovery for Time-series Data

The PC and FCI causal discovery methods work well with discrete/categorical data.

example

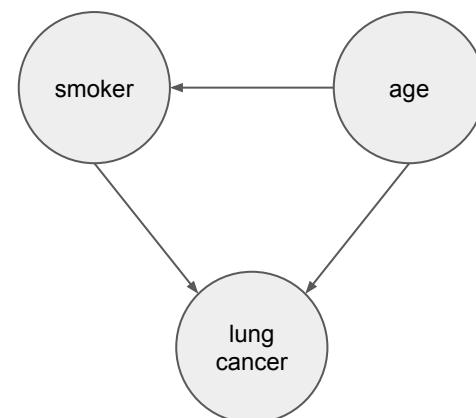
non-smoker **0** - smoker **1**

age under 50 **0** - age over 50 **1**

no lung cancer **0** - lung cancer **1**

What if our data is time-dependent?

Time	Smoker	Age	Lung cancer
0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1
6	1	1	0
7	1	1	1



We cannot only consider the contemporaneous relationships

Causal Discovery for Time-series Data

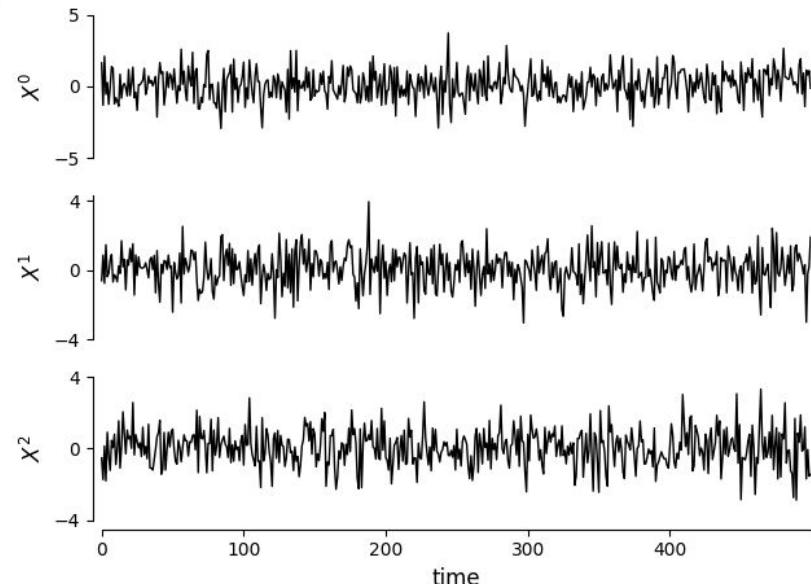
The PC and FCI causal discovery methods work well with discrete/categorical data.

What if we deal with time-series data?

PC/FCI is inappropriate to use with time series data due to:

- time ordering
- lagged dependencies
- high false positive rates due to the autocorrelation

$$\begin{cases} X_t^0 = 0.2(X_{t-1}^1)^2 + \eta_t^0 \\ X_t^1 = \eta_t^1 \\ X_t^2 = 0.3(X_{t-2}^1)^2 + \eta_t^2 \end{cases}$$



Outline

- **Causal Discovery for Time-series Data**
 - **PCMCI algorithm**
- Robotics Applications
 - F-PCMCI algorithm
 - CAnDOIT algorithm
 - CausalFlow
 - ROS-Causal

Causal Discovery for Time-series Data

PCMCI algorithm

It consists of two main steps:

- **PC algorithm**

retrieves the causal model structure by considering ONLY lagged dependencies as possible causal relationships between variables

- **MCI test**

validates the structure found at the previous step by performing a false positive rate optimisation control

$$X_{t-\tau}^i \perp\!\!\!\perp X_t^j | \tilde{P}(X_{t-\tau}^i), \tilde{P}(X_t^j)$$

Key parameter: \mathcal{T} maximum time delay

Causal Discovery for Time-series Data

PCMCI algorithm

It consists of two main steps:

- **PC algorithm**

retrieves the causal model structure by considering ONLY lagged dependencies as possible causal relationships between variables

X

- **MCI test**

validates the structure found at the previous step by performing a false positive rate optimisation control

Y

Z

W

$$X_{t-\tau}^i \perp\!\!\!\perp X_t^j | \tilde{P}(X_{t-\tau}^i), \tilde{P}(X_t^j)$$

Key parameter: \mathcal{T} maximum time delay

Causal Discovery for Time-series Data

PCMCI algorithm

It consists of two main steps:

- **PC algorithm**

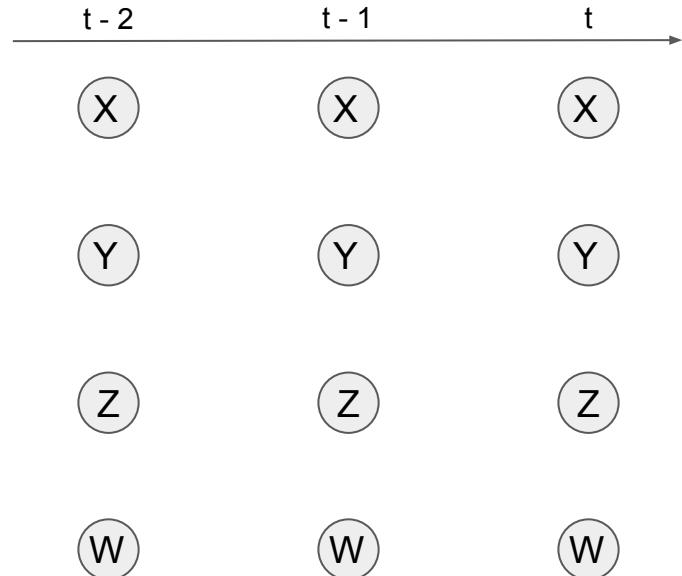
retrieves the causal model structure by considering ONLY lagged dependencies as possible causal relationships between variables

- **MCI test**

validates the structure found at the previous step by performing a false positive rate optimisation control

$$X_{t-\tau}^i \perp\!\!\!\perp X_t^j \mid \tilde{P}(X_{t-\tau}^i), \tilde{P}(X_t^j)$$

Key parameter: \mathcal{T} maximum time delay



Causal Discovery for Time-series Data

PCMCI algorithm

It consists of two main steps:

- **PC algorithm**

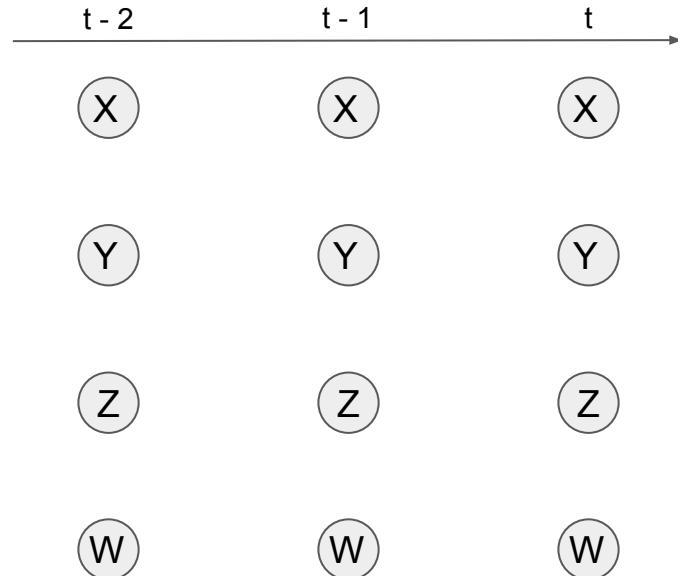
retrieves the causal model structure by considering ONLY lagged dependencies as possible causal relationships between variables

- **MCI test**

validates the structure found at the previous step by performing a false positive rate optimisation control

$$X_{t-\tau}^i \perp\!\!\!\perp X_t^j \mid \tilde{P}(X_{t-\tau}^i), \tilde{P}(X_t^j)$$

Key parameter: \mathcal{T} maximum time delay



Causal Discovery for Time-series Data

PCMCI algorithm

It consists of two main steps:

- **PC algorithm**

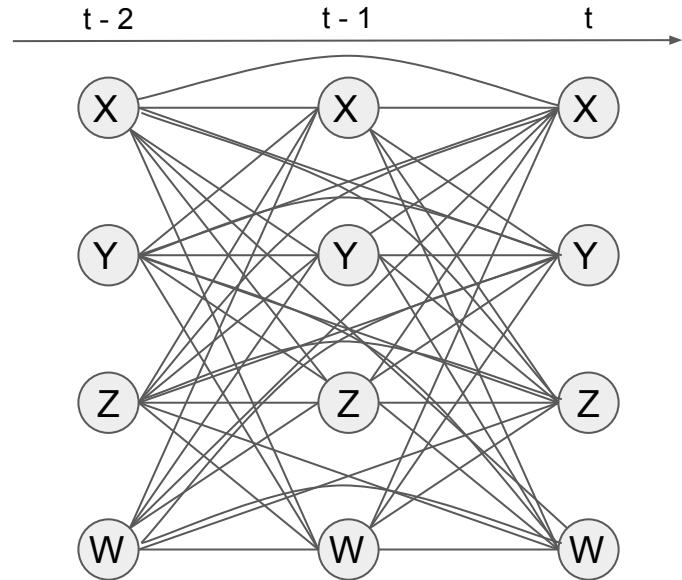
retrieves the causal model structure by considering ONLY lagged dependencies as possible causal relationships between variables

- **MCI test**

validates the structure found at the previous step by performing a false positive rate optimisation control

$$X_{t-\tau}^i \perp\!\!\!\perp X_t^j \mid \tilde{P}(X_{t-\tau}^i), \tilde{P}(X_t^j)$$

Key parameter: \mathcal{T} maximum time delay



Causal Discovery for Time-series Data

PCMCI algorithm

It consists of two main steps:

- **PC algorithm**

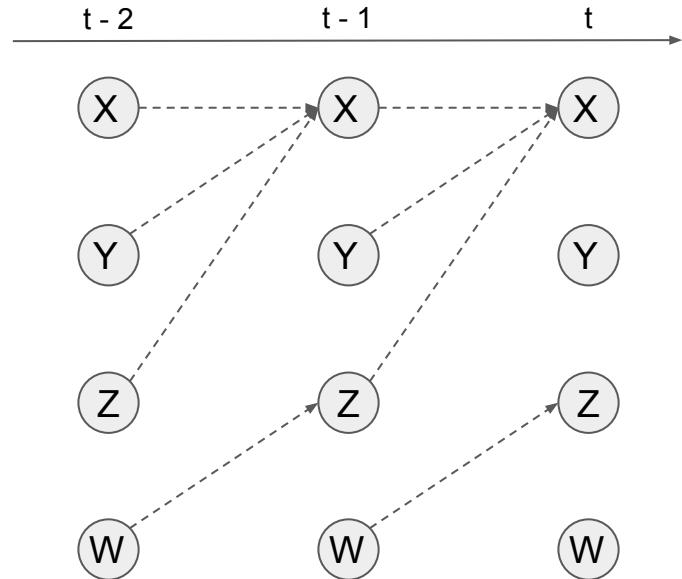
retrieves the causal model structure by considering ONLY lagged dependencies as possible causal relationships between variables

- **MCI test**

validates the structure found at the previous step by performing a false positive rate optimisation control

$$X_{t-\tau}^i \perp\!\!\!\perp X_t^j \mid \tilde{P}(X_{t-\tau}^i), \tilde{P}(X_t^j)$$

Key parameter: \mathcal{T} maximum time delay



Causal Discovery for Time-series Data

PCMCI algorithm

It consists of two main steps:

- **PC algorithm**

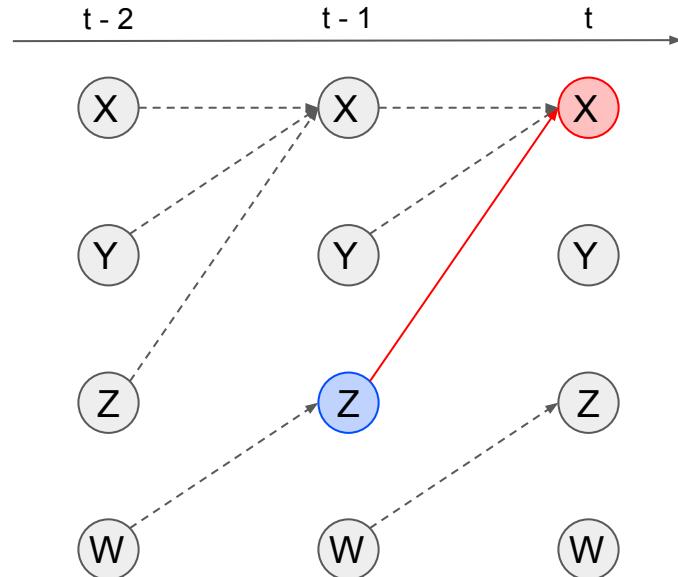
retrieves the causal model structure by considering ONLY lagged dependencies as possible causal relationships between variables

- **MCI test**

validates the structure found at the previous step by performing a false positive rate optimisation control

$$X_{t-\tau}^i \perp\!\!\!\perp X_t^j \mid \tilde{P}(X_{t-\tau}^i), \tilde{P}(X_t^j)$$

Key parameter: \mathcal{T} maximum time delay



Causal Discovery for Time-series Data

PCMCI algorithm

It consists of two main steps:

- **PC algorithm**

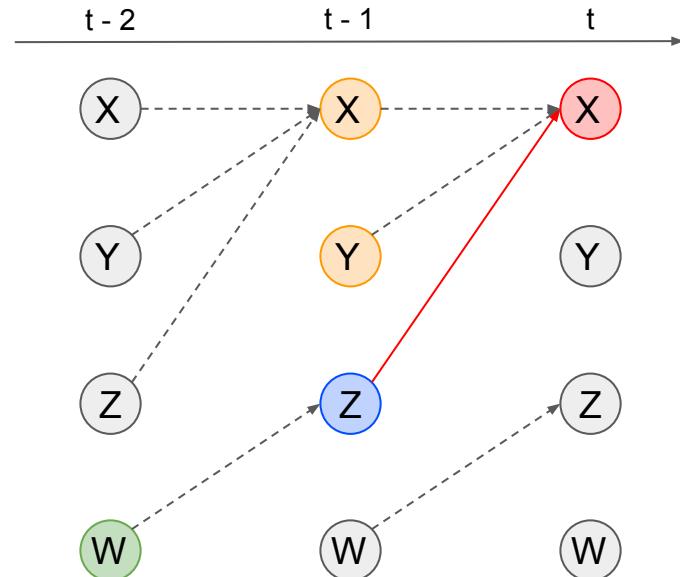
retrieves the causal model structure by considering ONLY lagged dependencies as possible causal relationships between variables

- **MCI test**

validates the structure found at the previous step by performing a false positive rate optimisation control

$$X_{t-\tau}^i \perp\!\!\!\perp X_t^j \mid \tilde{P}(X_{t-\tau}^i), \tilde{P}(X_t^j)$$

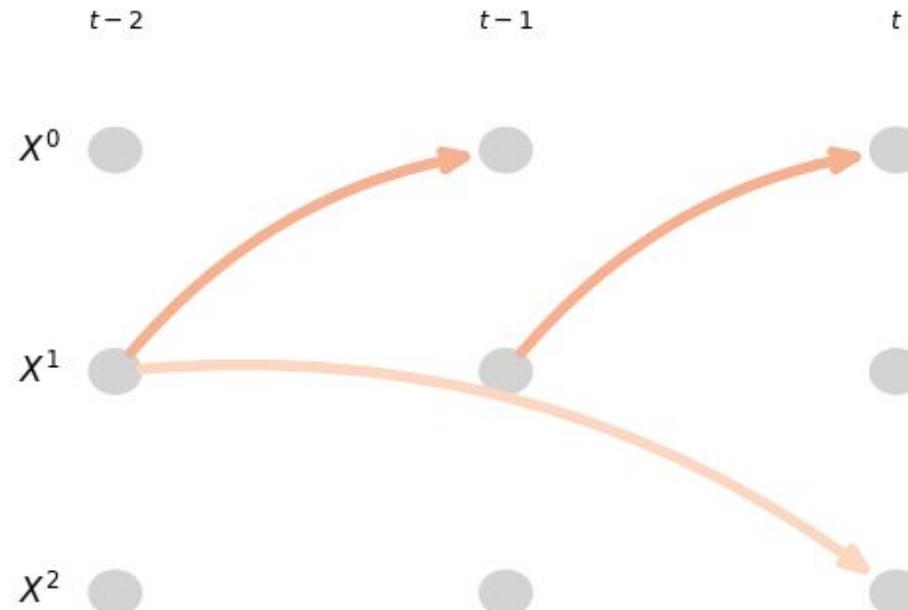
Key parameter: \mathcal{T} maximum time delay



Causal Discovery for Time-series Data

PCMCI algorithm

$$\left\{ \begin{array}{l} X_t^0 = 0.4(X_{t-1}^1)^2 + \eta_t^0 \\ X_t^1 = \eta_t^1 \\ X_t^2 = 0.3(X_{t-2}^1)^2 + \eta_t^2 \end{array} \right.$$

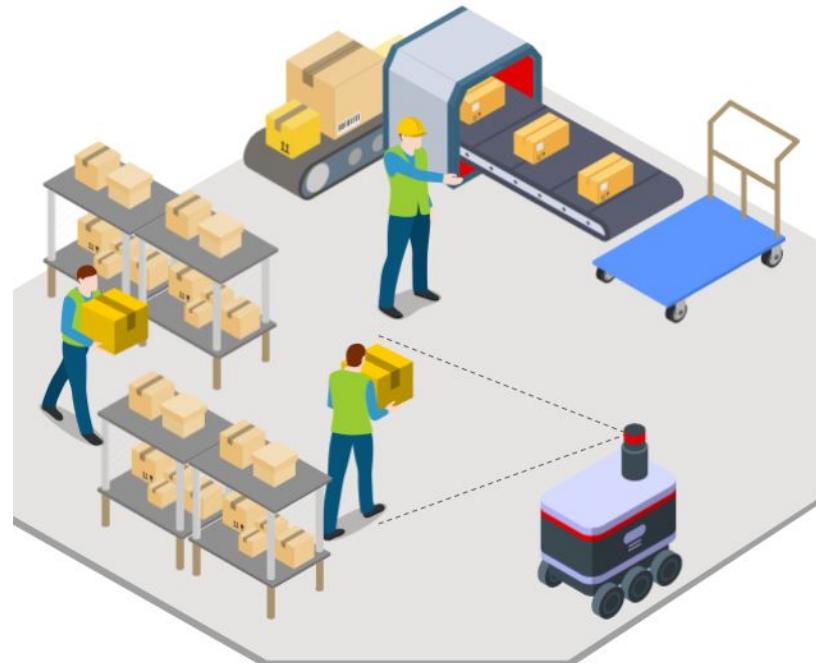


Outline

- Causal Discovery for Time-series Data
 - PCMCI algorithm
- **Robotics Applications**
 - F-PCMCI algorithm
 - CAnDOIT algorithm
 - CausalFlow
 - ROS-Causal

Main challenges in robotics:

- execution time of the causal discovery analysis
- conduct causal discovery using data from observations and interventions
- conduct the causal discovery analysis online



Outline

- Causal Discovery for Time-series Data
 - PCMCI algorithm
- **Robotics Applications**
 - **F-PCMCI algorithm**
 - CAnDOIT algorithm
 - CausalFlow
 - ROS-Causal

Robotics Applications

F-PCMCI algorithm

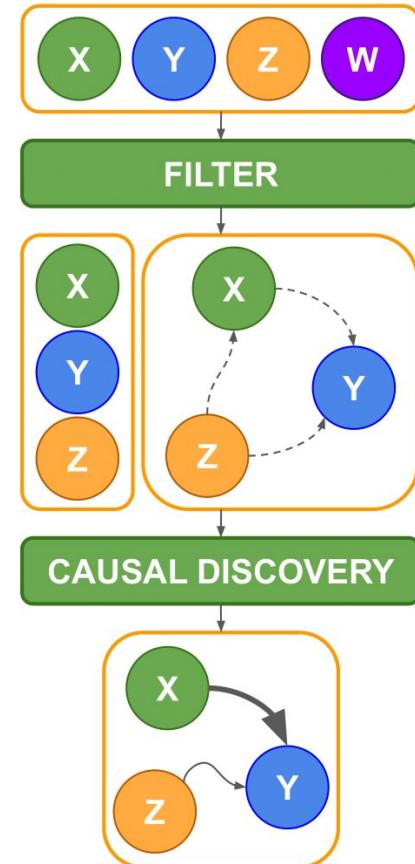
PCMCI computational cost depends on:

- the length of the time-series
- the number of variables

Filtered-PCMCI (**F-PCMCI**) steps:

- takes in input a prefixed set of variables
- the Transfer Entropy-based filter analyses and removes irrelevant variables (e.g., constants or isolated ones). The reduced variable set is used to create a hypothetical causal model
- the hypothetical causal model needs to be validated by a proper causal analysis, which is performed by PCMCI

This strategy enables **faster** and **more accurate** causal discovery



Robotics Applications

F-PCMCI algorithm

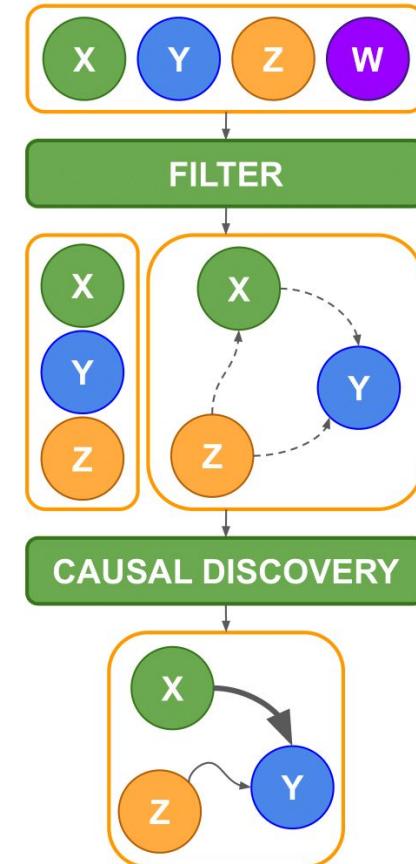
PCMCI computational cost depends on:

- the length of the time-series
- the number of variables

Filtered-PCMCI (**F-PCMCI**) steps:

- takes in input a prefixed set of variables
- the Transfer Entropy-based filter analyses and removes irrelevant variables (e.g., constants or isolated ones). The reduced variable set is used to create a hypothetical causal model
- the hypothetical causal model needs to be validated by a proper causal analysis, which is performed by PCMCI

This strategy enables **faster** and **more accurate** causal discovery

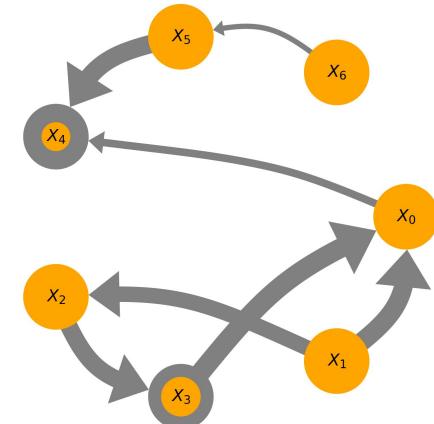


Robotics Applications

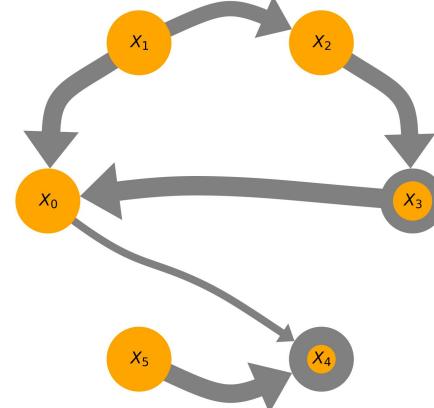
F-PCMCI algorithm

$$\left\{ \begin{array}{l} x_0(t) = 2x_1(t-1) + 3x_3(t-1) + \eta_0 \\ x_1(t) = \eta_1 \\ x_2(t) = 1.1x_1(t-1)^2 + \eta_2 \\ x_3(t) = x_3(t-1) \cdot x_2(t-1) + \eta_3 \\ x_4(t) = x_4(t-1) + x_5(t-1) \cdot x_0(t-1) + \eta_4 \\ x_5(t) = \eta_5 \\ x_6(t) = \eta_6 \end{array} \right.$$

PCMCI



F-PCMCI

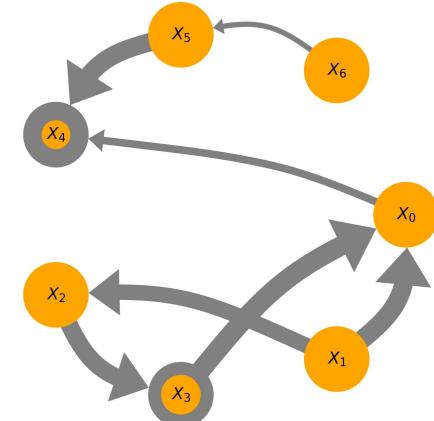


Robotics Applications

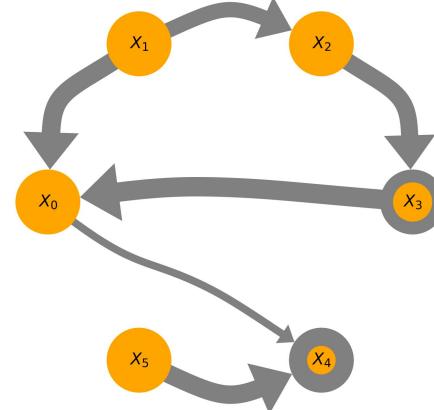
F-PCMCI algorithm

$$\left\{ \begin{array}{l} x_0(t) = 2x_1(t-1) + 3x_3(t-1) + \eta_0 \\ x_1(t) = \eta_1 \\ x_2(t) = 1.1x_1(t-1)^2 + \eta_2 \\ x_3(t) = x_3(t-1) \cdot x_2(t-1) + \eta_3 \\ x_4(t) = x_4(t-1) + x_5(t-1) \cdot x_0(t-1) + \eta_4 \\ x_5(t) = \eta_5 \\ x_6(t) = \eta_6 \end{array} \right. \quad \text{Isolated}$$

PCMCI



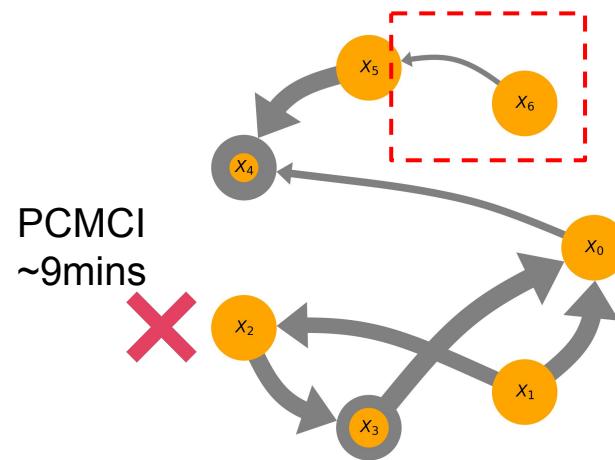
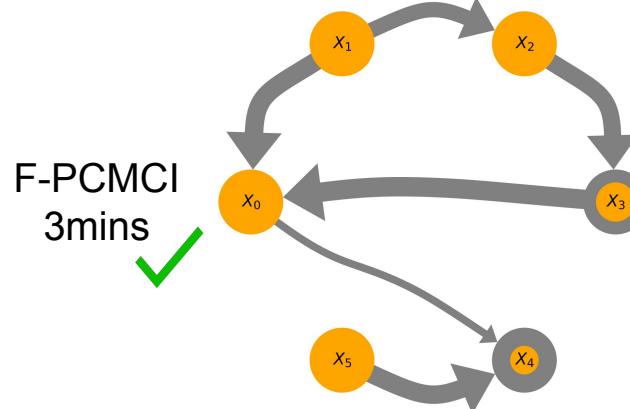
F-PCMCI



Robotics Applications

F-PCMCI algorithm

$$\left\{ \begin{array}{l} x_0(t) = 2x_1(t-1) + 3x_3(t-1) + \eta_0 \\ x_1(t) = \eta_1 \\ x_2(t) = 1.1x_1(t-1)^2 + \eta_2 \\ x_3(t) = x_3(t-1) \cdot x_2(t-1) + \eta_3 \\ x_4(t) = x_4(t-1) + x_5(t-1) \cdot x_0(t-1) + \eta_4 \\ x_5(t) = \eta_5 \\ x_6(t) = \eta_6 \end{array} \right. \quad \text{Isolated}$$



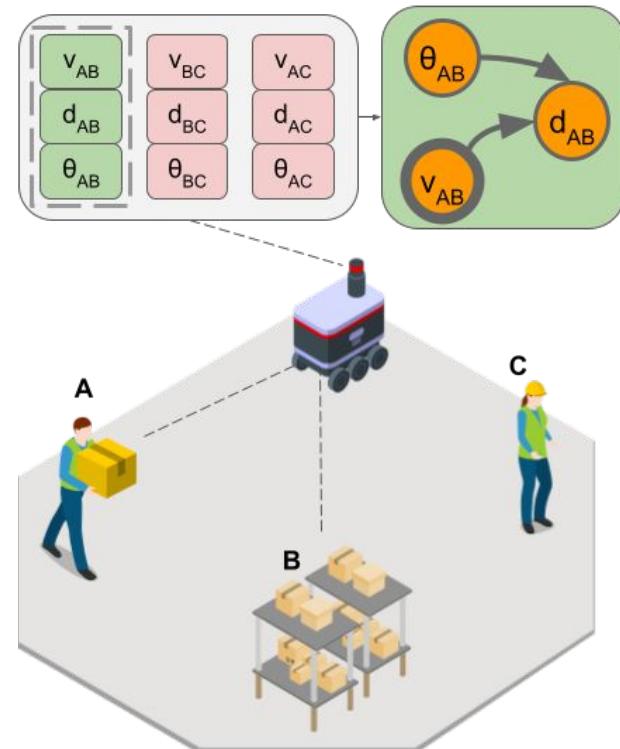
Robotics Applications

F-PCMCI algorithm

Considering the interaction scenario modelled by three variables

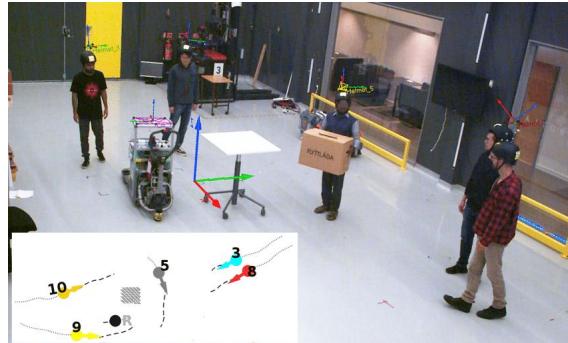
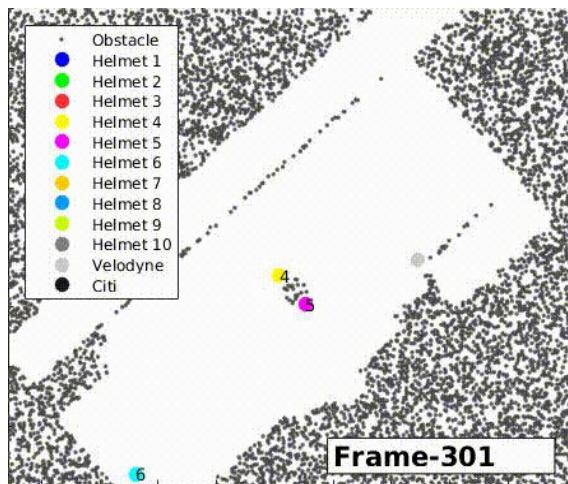
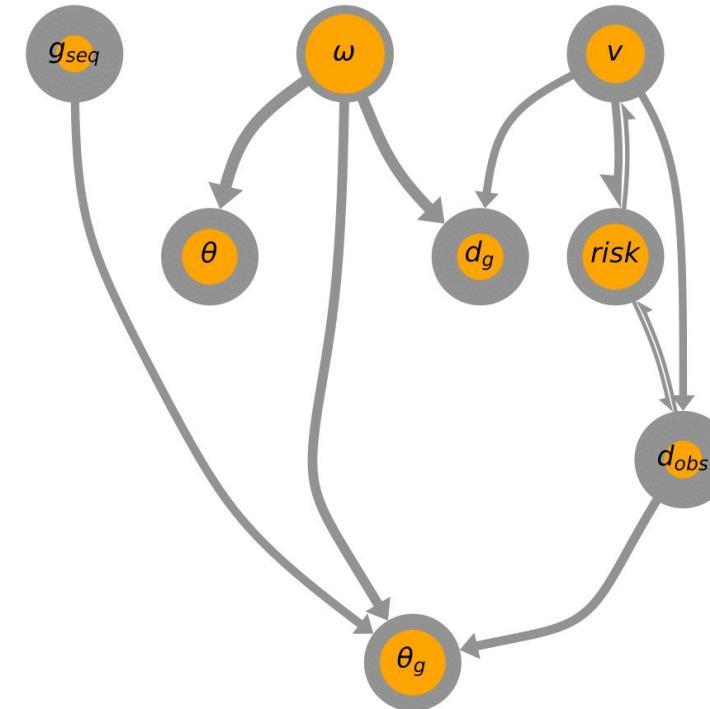
- v_{ij} : relative velocity between agent i and j
- d_{ij} : distance between agent i and j
- θ_{ij} : angle between agent i and j

Are all the observable variables useful to understand the observed scenario?



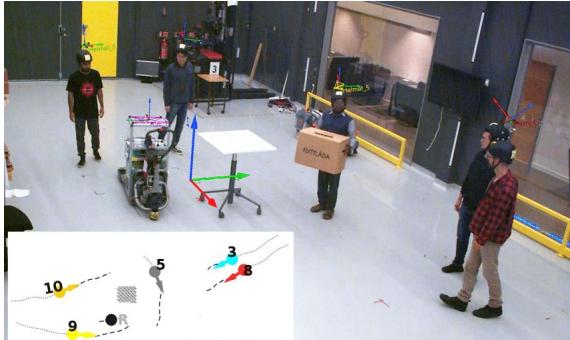
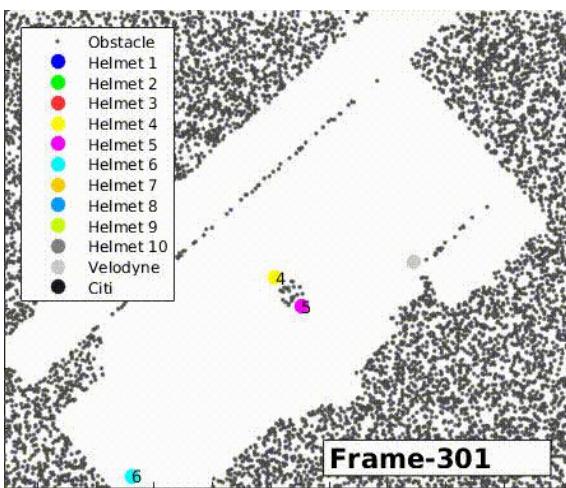
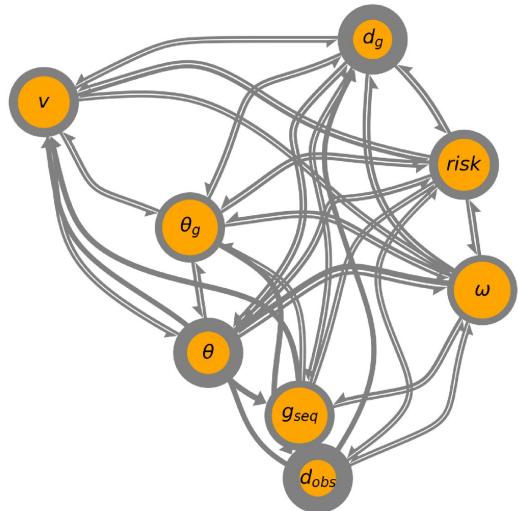
Robotics Applications

F-PCMCI algorithm

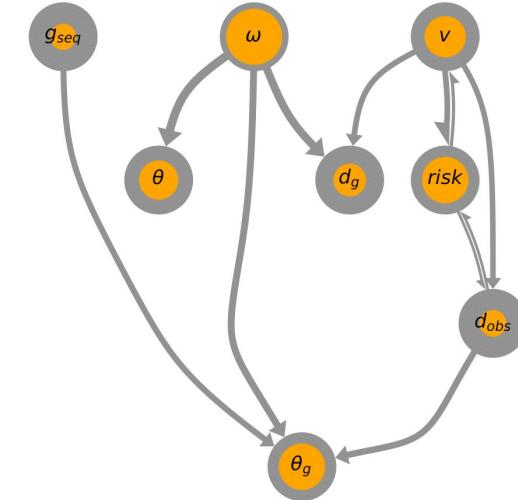


Robotics Applications

F-PCMCI algorithm



PCMCI ~ 80 mins



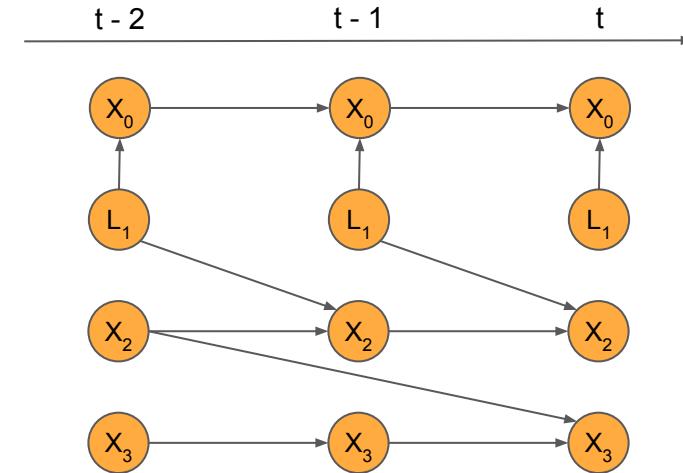
F-PCMCI ~ 18 mins

Outline

- Causal Discovery for Time-series Data
 - PCMCI algorithm
- **Robotics Applications**
 - F-PCMCI algorithm
 - **CAnDOIT algorithm**
 - CausalFlow
 - ROS-Causal

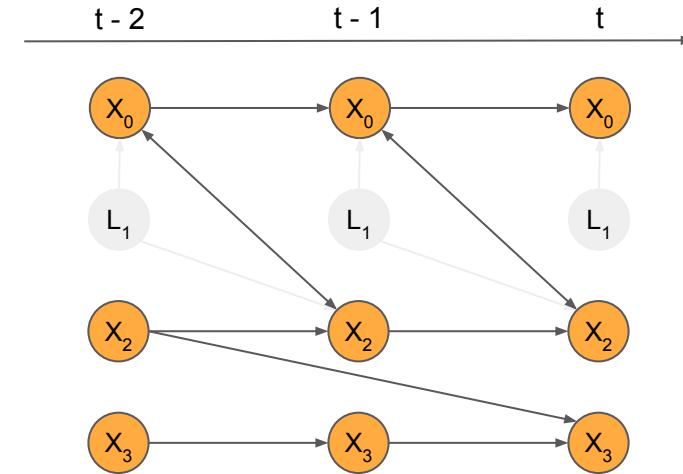
- Observational data alone are often insufficient to accurately identify the correct causal model in complex scenarios where not all variables are observable

$$\begin{cases} X_0(t) = 0.9X_0(t-1) + 0.6X_1(t) + \eta_0 \\ L_1(t) = \eta_1 \\ X_2(t) = 0.9X_2(t-1) + 0.4X_1(t-1) + \eta_2 \\ X_3(t) = 0.9X_3(t-1) - 0.5X_2(t-2) + \eta_3 \end{cases}$$



- Observational data alone are often insufficient to accurately identify the correct causal model in complex scenarios where not all variables are observable

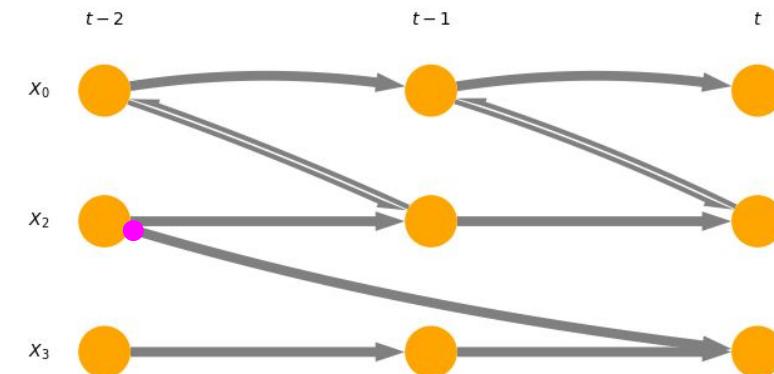
$$\begin{cases} X_0(t) = 0.9X_0(t-1) + 0.6X_1(t) + \eta_0 \\ L_1(t) = \eta_1 \\ X_2(t) = 0.9X_2(t-1) + 0.4X_1(t-1) + \eta_2 \\ X_3(t) = 0.9X_3(t-1) - 0.5X_2(t-2) + \eta_3 \end{cases}$$



- Observational data alone are often insufficient to accurately identify the correct causal model in complex scenarios where not all variables are observable

$$\begin{cases} X_0(t) = 0.9X_0(t-1) + 0.6X_1(t) + \eta_0 \\ L_1(t) = \eta_1 \\ X_2(t) = 0.9X_2(t-1) + 0.4X_1(t-1) + \eta_2 \\ X_3(t) = 0.9X_3(t-1) - 0.5X_2(t-2) + \eta_3 \end{cases}$$

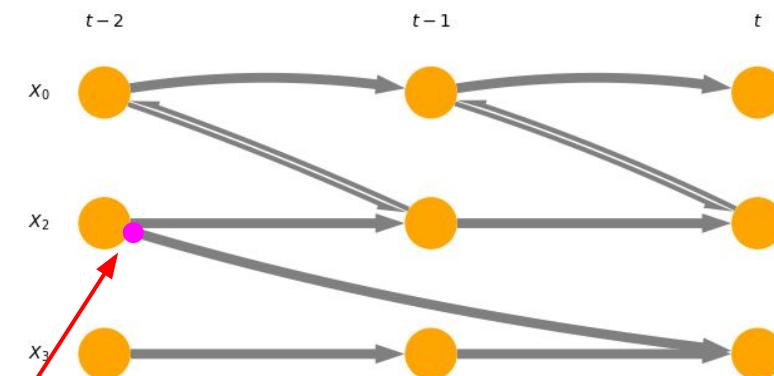
Causal model obtained by using **Latent-PCMCI** (**LPCMCI**): version of PCMCI, based on FCI, that handles latent variables



- Observational data alone are often insufficient to accurately identify the correct causal model in complex scenarios where not all variables are observable

$$\begin{cases} X_0(t) = 0.9X_0(t-1) + 0.6X_1(t) + \eta_0 \\ L_1(t) = \eta_1 \\ X_2(t) = 0.9X_2(t-1) + 0.4X_1(t-1) + \eta_2 \\ X_3(t) = 0.9X_3(t-1) - 0.5X_2(t-2) + \eta_3 \end{cases}$$

Causal model obtained by using **Latent-PCMCI** (**LPCMCI**): version of PCMCI, based on FCI, that handles latent variables



LPCMCI is uncertain about the orientation of this link

→ = → or ←

Robotics Applications

CAndoIT algorithm

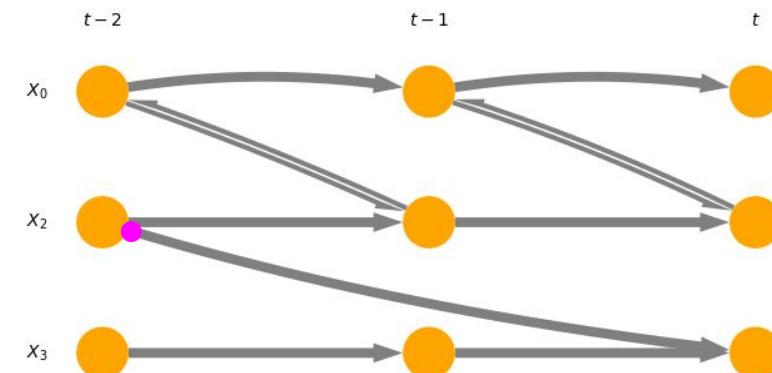
- Observational data alone are often insufficient to accurately identify the correct causal model in complex scenarios where not all variables are observable

$$\begin{cases} X_0(t) = 0.9X_0(t-1) + 0.6X_1(t) + \eta_0 \\ L_1(t) = \eta_1 \\ X_2(t) = 0.9X_2(t-1) + 0.4X_1(t-1) + \eta_2 \\ X_3(t) = 0.9X_3(t-1) - 0.5X_2(t-2) + \eta_3 \end{cases}$$

Despite the "simple" toy problem (linear, 4 variables)

- reconstructing the causal model from data is never straightforward
- especially when there are hidden confounders

Causal model obtained by using **Latent-PCMCI** (**LPCMCI**): version of PCMCI, based on FCI, that handles latent variables

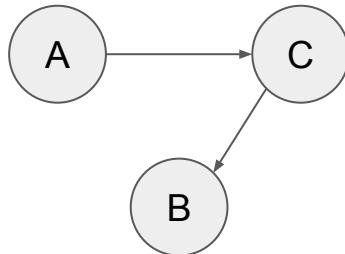


How can we perform causal discovery using data from observations 🕳️ and interventions 🔨?

CAndoIT algorithm

- Observational data alone are often insufficient to accurately identify the correct causal model in complex scenarios where not all variables are observable
- We need **interventions**

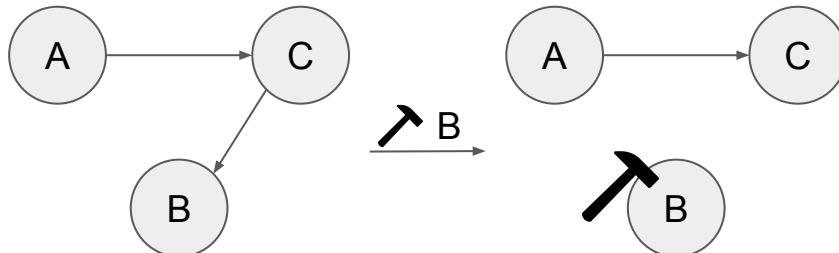
CAndoIT: CAusal Discovery with Observational and Interventional data from Time-series



CAndoIT algorithm

- Observational data alone are often insufficient to accurately identify the correct causal model in complex scenarios where not all variables are observable
- We need **interventions**

CAndoIT: CAusal Discovery with Observational and Interventional data from Time-series



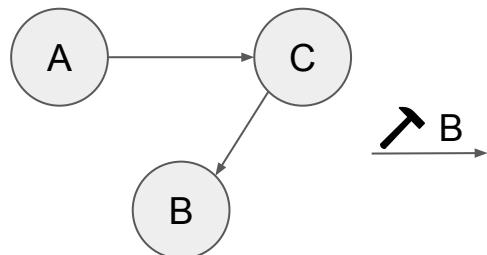
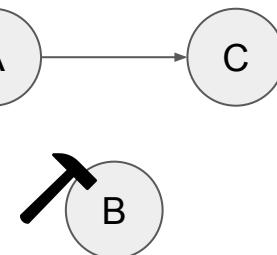
- For the observational case, we need to consider B's parents
- For the interventional case, we need to remove all incoming links to B

How can we enable a causal discovery method to do this?

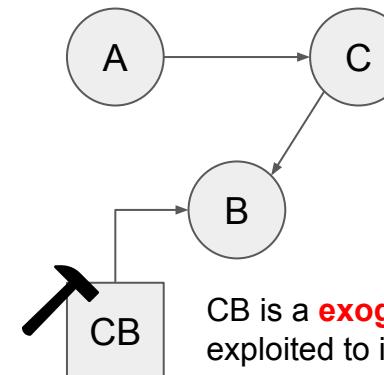
CAndoIT algorithm

- Observational data alone are often insufficient to accurately identify the correct causal model in complex scenarios where not all variables are observable
- We need **interventions**

CAndoIT: CAusal Discovery with Observational and Interventional data from Time-series



 CAnDOIT uses **context** variables



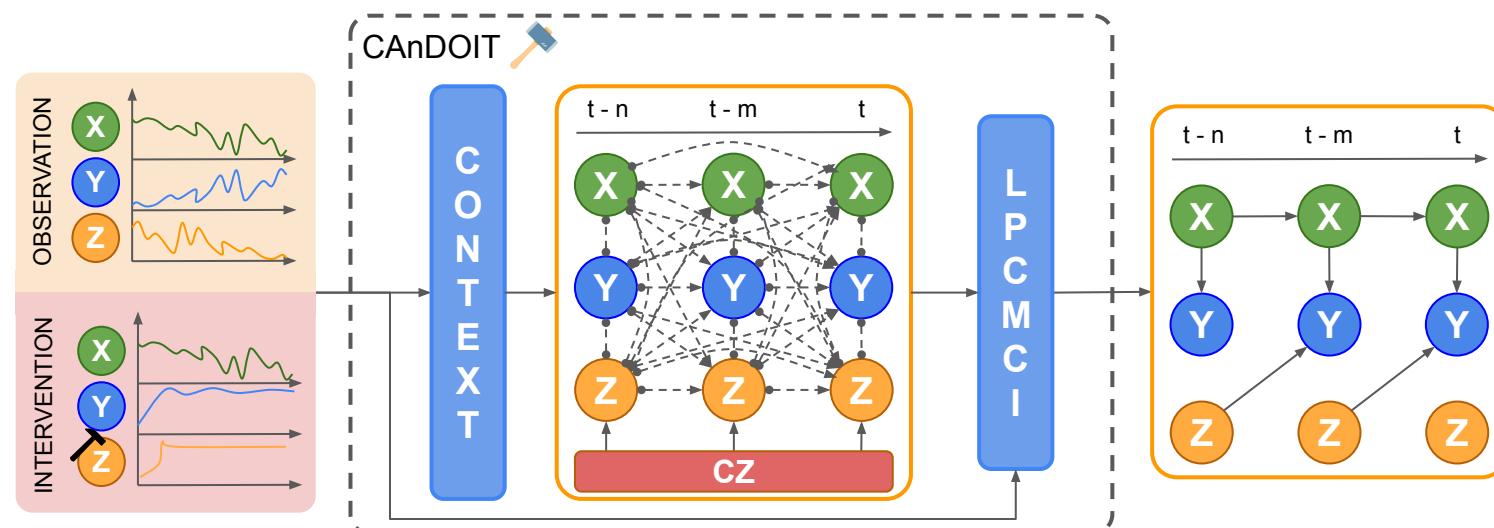
CB is a **exogenous** dummy variable exploited to inject interventional data

Robotics Applications

CAnDOIT algorithm

- Observational data alone are often insufficient to accurately identify the correct causal model in complex scenarios where not all variables are observable
- We need **interventions**

CAnDOIT: CAusal Discovery with Observational and Interventional data from Time-series

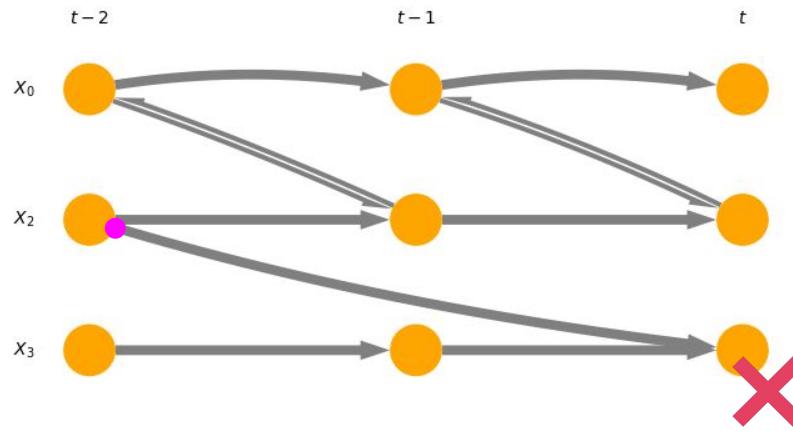
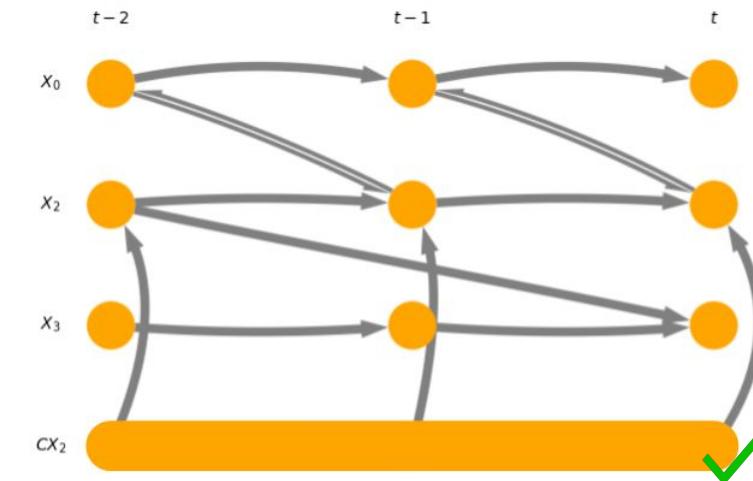


Robotics Applications

CAndoIT algorithm

- Observational data alone are often insufficient to accurately identify the correct causal model in complex scenarios where not all variables are observable
- We need **interventions**

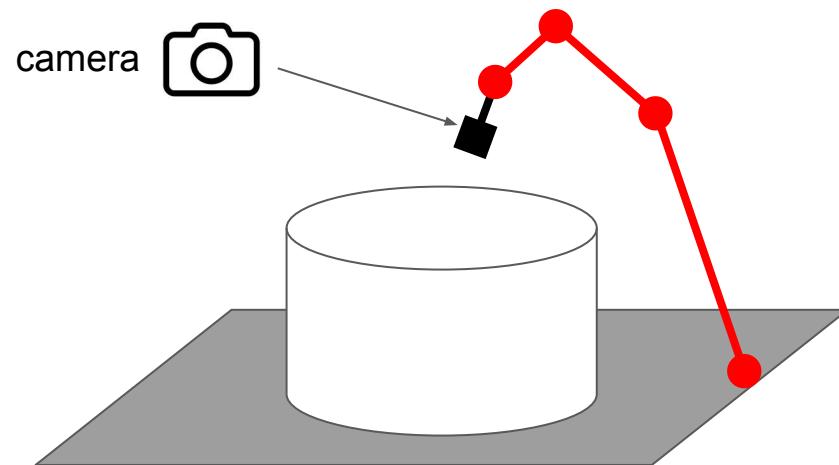
Causal model obtained by using CAnDOIT



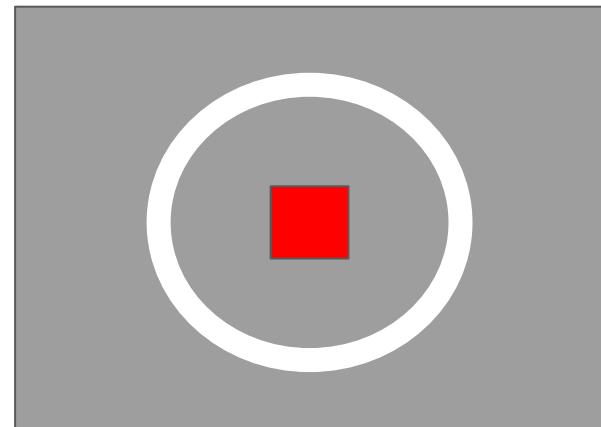
Robotics Applications

CAnDOIT algorithm

Consider the brightness of the colours of the objects in the cylinder captured by a robot camera



3D representation

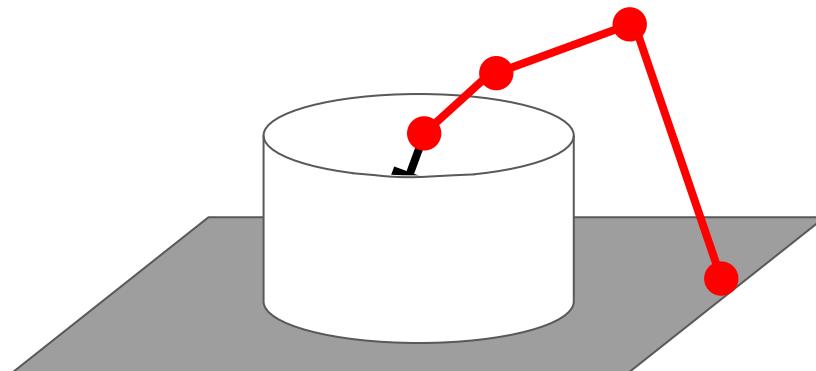


2D representation

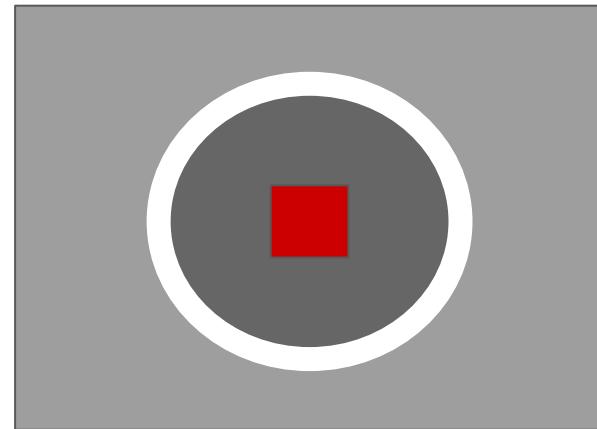
Robotics Applications

CAnDOIT algorithm

Consider the brightness of the colours of the objects in the cylinder captured by a robot camera



3D representation



2D representation

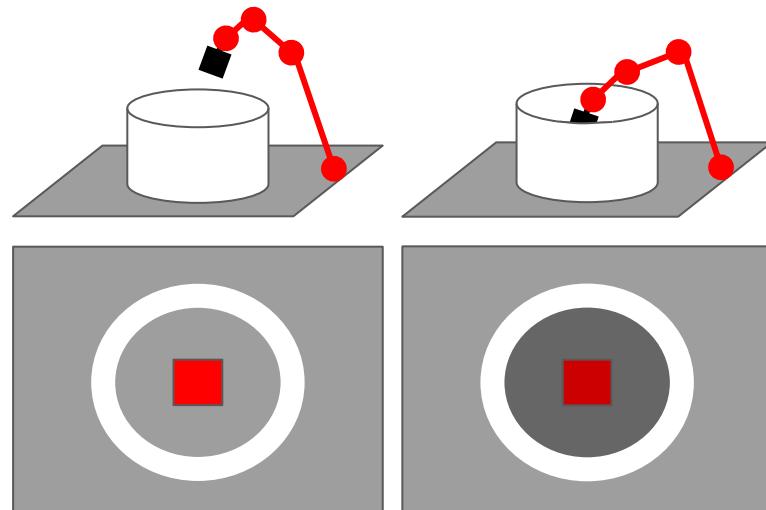
Robotics Applications

CAnDOIT algorithm

Consider the brightness of the colors of the objects in the cylinder captured by a robot camera

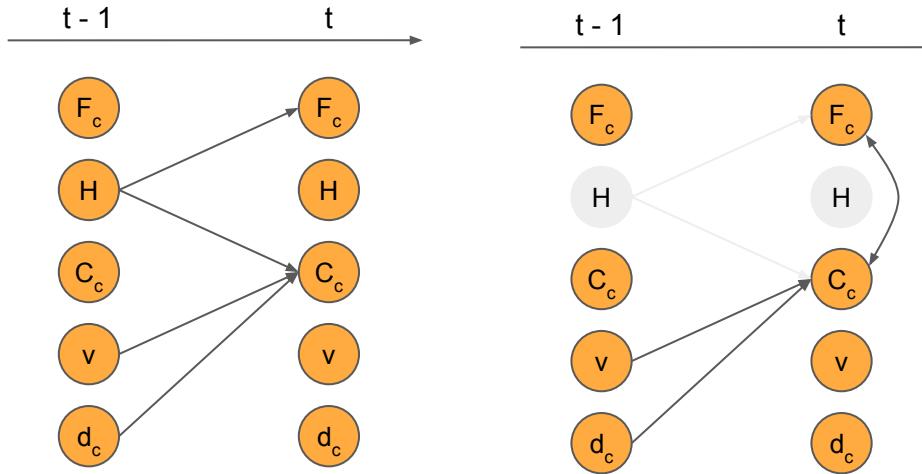
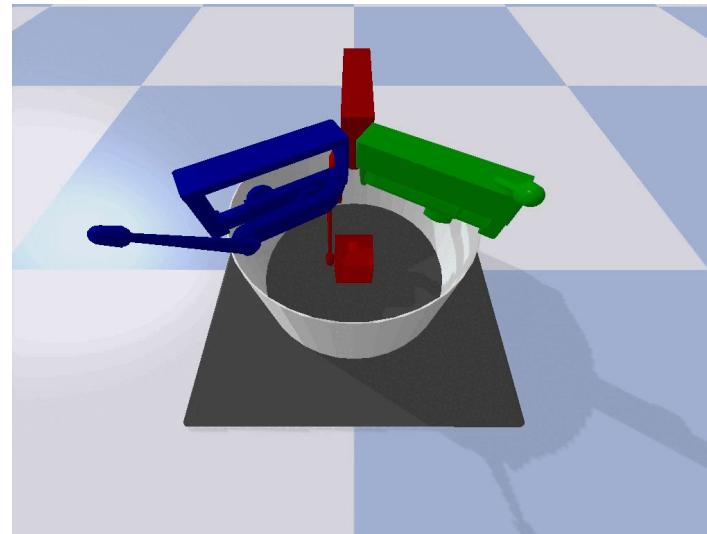
$$\begin{cases} F_c(t) = b(H(t-1)) \\ C_c(t) = b(H(t-1), v(t-1), d_c(t-1)) \end{cases}$$

$$b = K_h \frac{H}{H_{max}} + K_v \left(1 - \frac{v}{v_{max}} \right) + K_d \frac{d_c}{d_{cmax}}$$



Robotics Applications

CAnDOIT algorithm

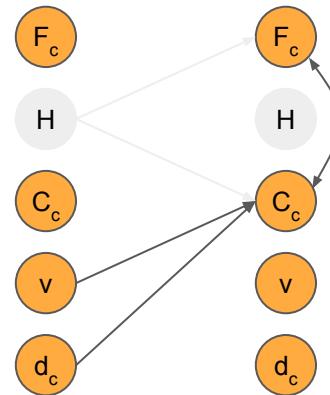


$$\begin{cases} F_c(t) = b(H(t-1)) \\ C_c(t) = b(H(t-1), v(t-1), d_c(t-1)) \end{cases}$$

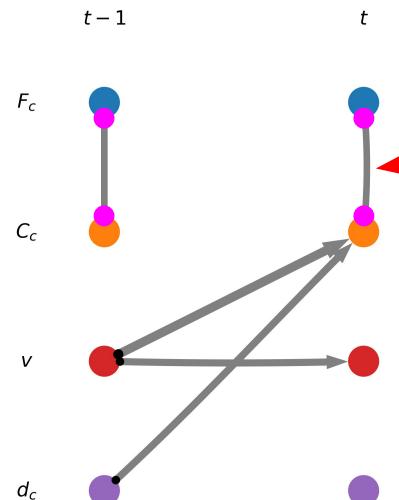
Robotics Applications

CAnDOIT algorithm

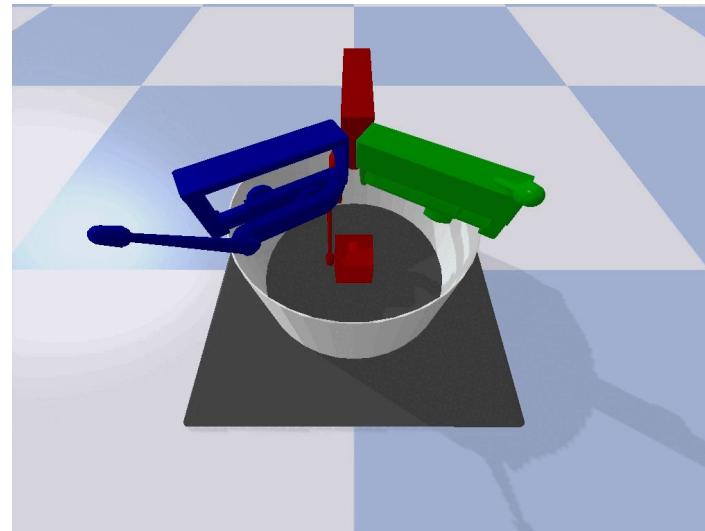
$t - 1$ t



$t - 1$



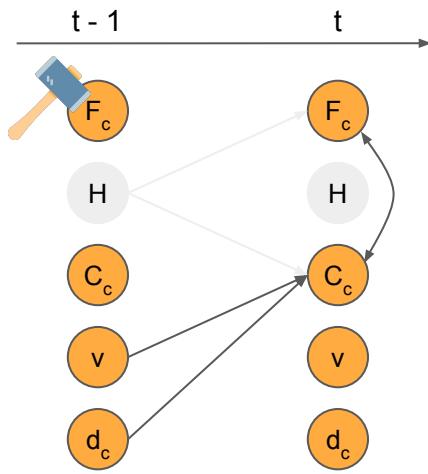
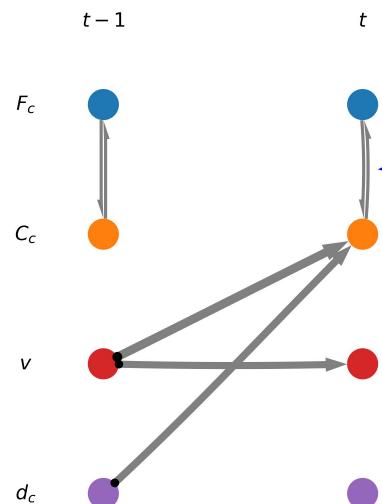
Again, LPCMCI is uncertain about the orientation of this link



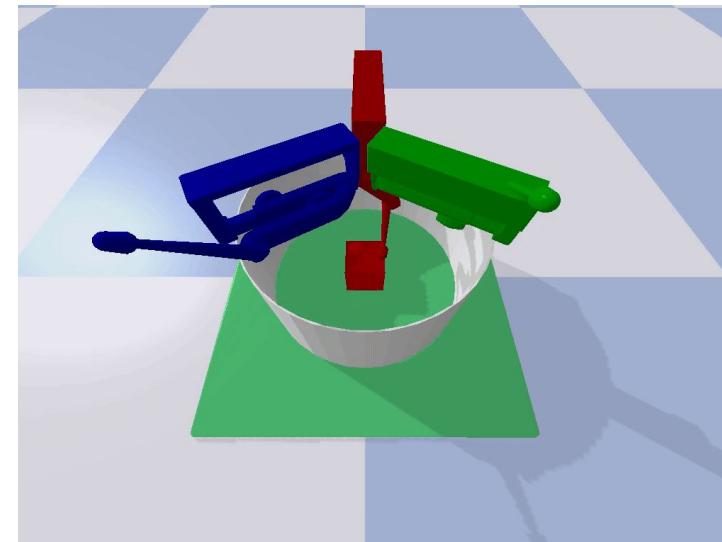
$$\begin{cases} F_c(t) = b(H(t - 1)) \\ C_c(t) = b(H(t - 1), v(t - 1), d_c(t - 1)) \end{cases}$$

Robotics Applications

CAnDOIT algorithm



CAnDOIT using observational and interventional data is able to correctly orient this link



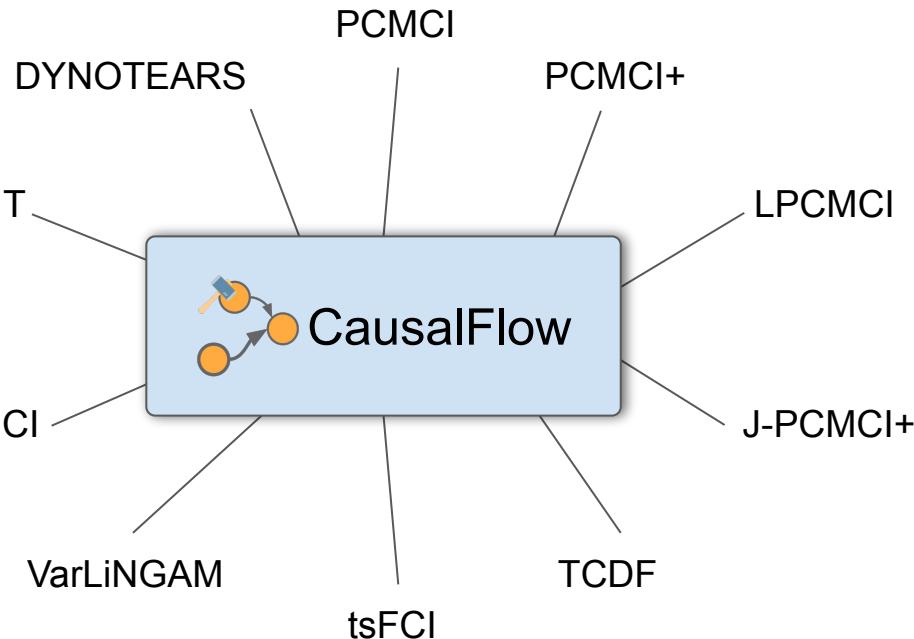
$$\begin{cases} F_c(t) = b(\cancel{H(t-1)}) \\ C_c(t) = b(H(t-1), v(t-1), d_c(t-1)) \end{cases}$$

Outline

- Causal Discovery for Time-series Data
 - PCMCI algorithm
- **Robotics Applications**
 - F-PCMCI algorithm
 - CAnDOIT algorithm
 - **CausalFlow**
 - ROS-Causal

Robotics Applications

 CausalFlow



GitHub

 CausalFlow

```
pip install  
py-causalflow
```

Outline

- Causal Discovery for Time-series Data
 - PCMCI algorithm
- **Robotics Applications**
 - F-PCMCI algorithm
 - CAnDOIT algorithm
 - CausalFlow
 - **ROS-Causal**

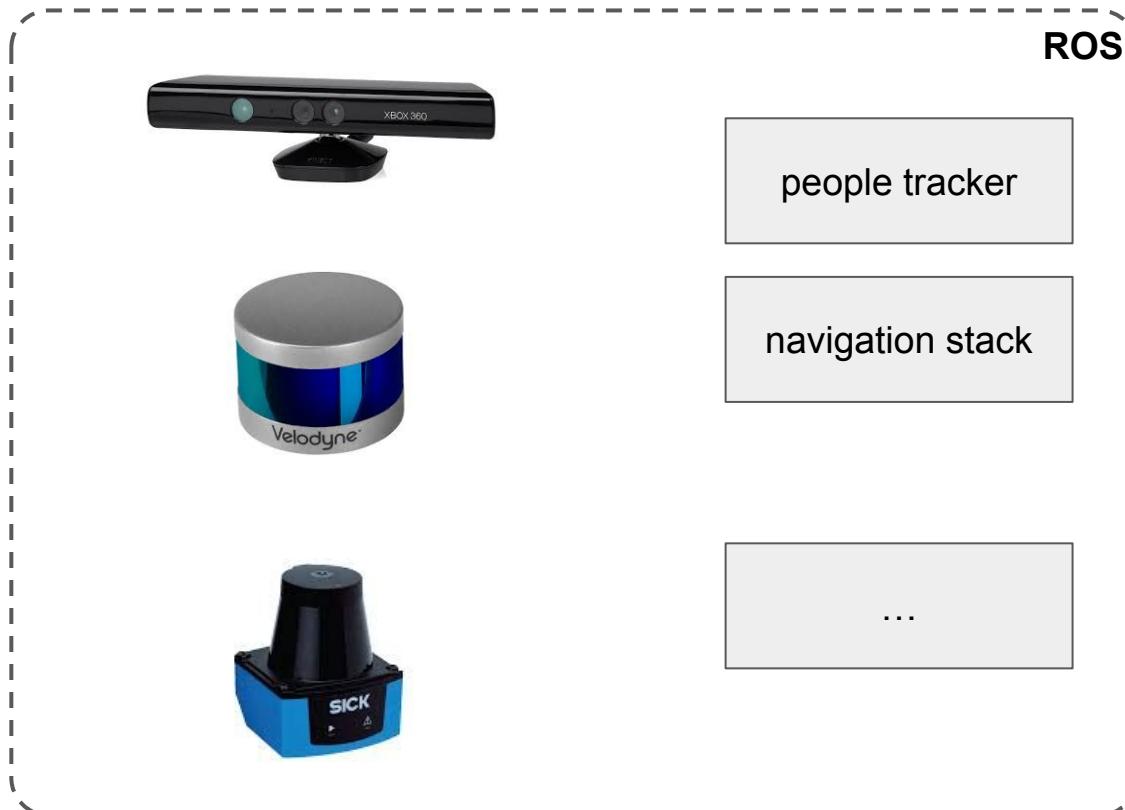
What is Robot Operating System (ROS)?

people tracker

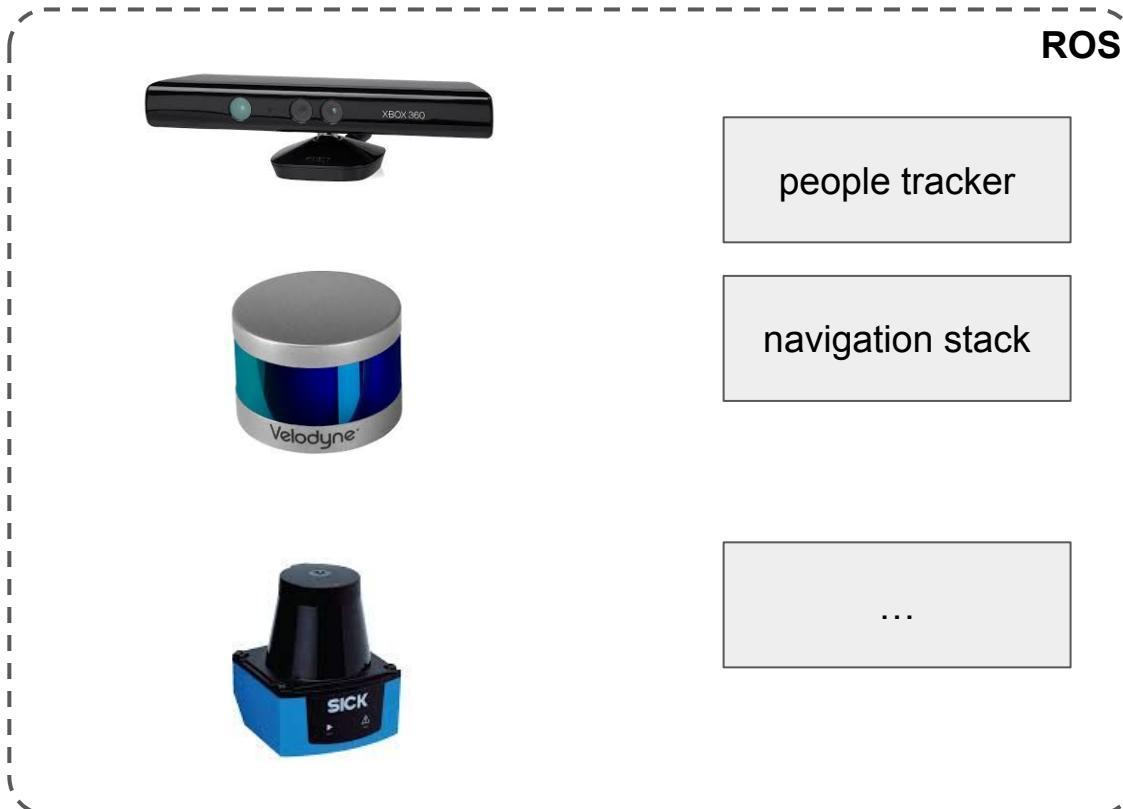
navigation stack

...

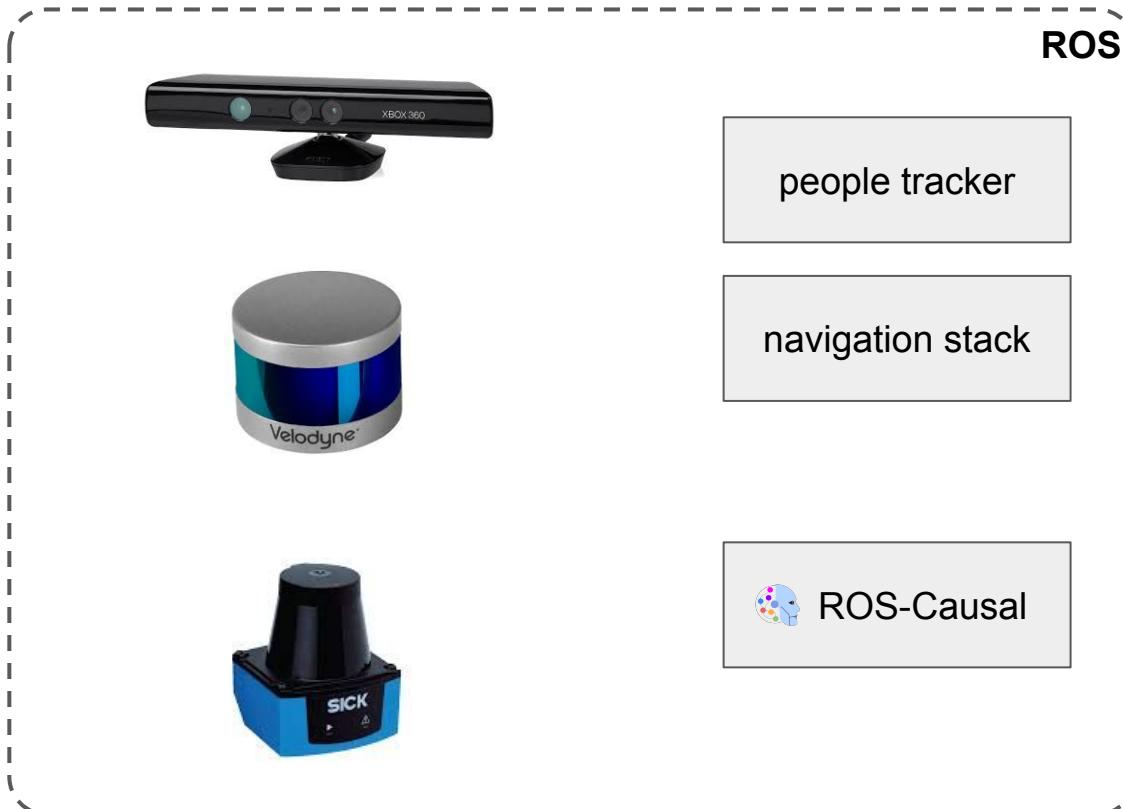
What is Robot Operating System (ROS)?



What is Robot Operating System (ROS)?

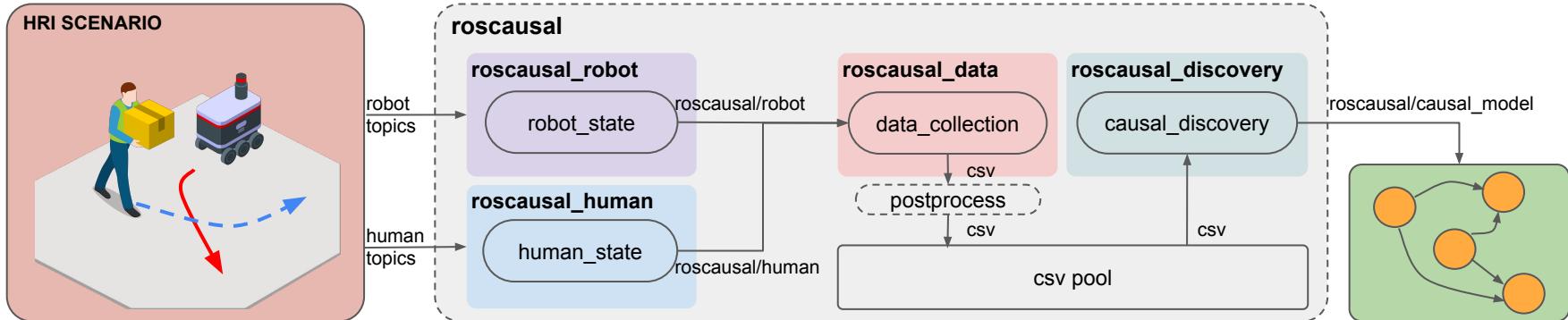


What is Robot Operating System (ROS)?



Robotics Applications

ROS-Causal

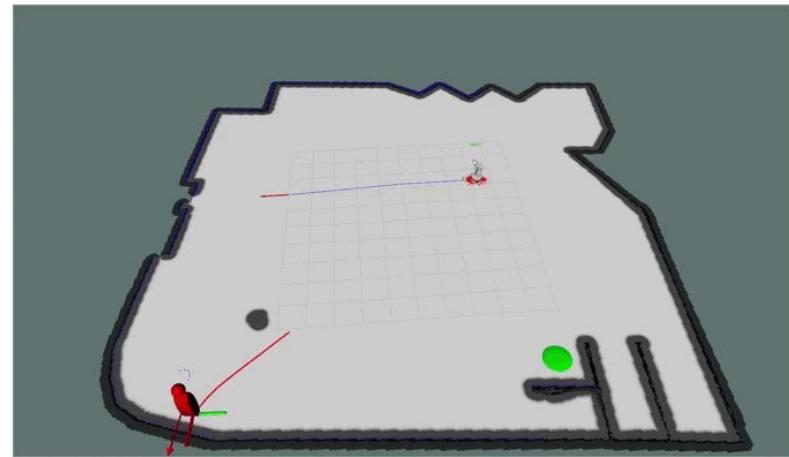
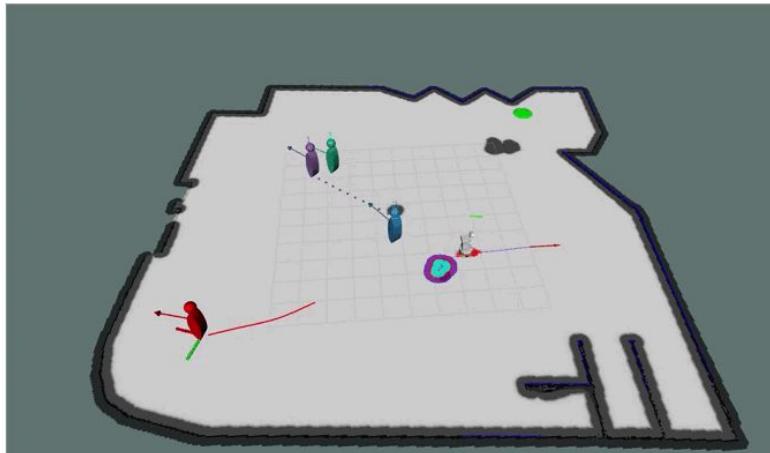
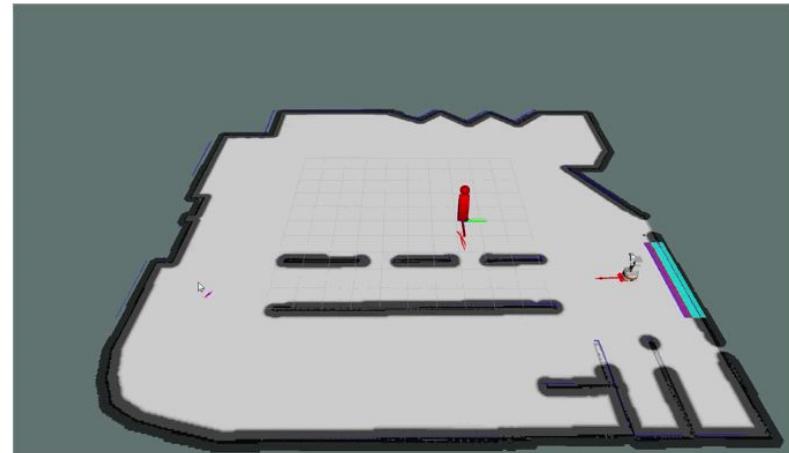


- ROS-Causal extracts and collects data from a HRI scenario, such as agents' trajectories, and performs causal analysis on the collected data in a batched manner. It is composed by four different rosnodes:
 - roscausal_robot
 - roscausal_human
 - roscausal_data
 - roscausal_discovery

ROS-Causal_HRISim

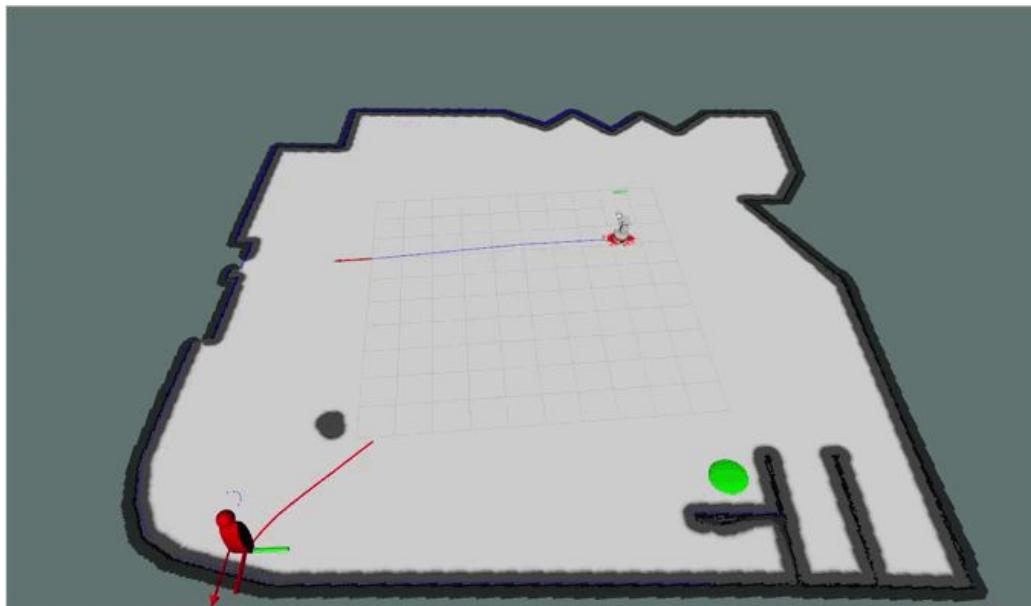
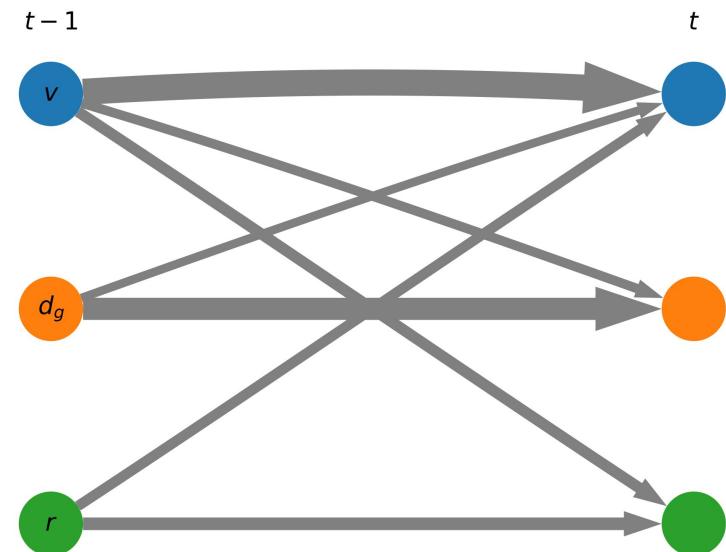
HRI simulator involving:

- TIAGo robot
- pedestrians



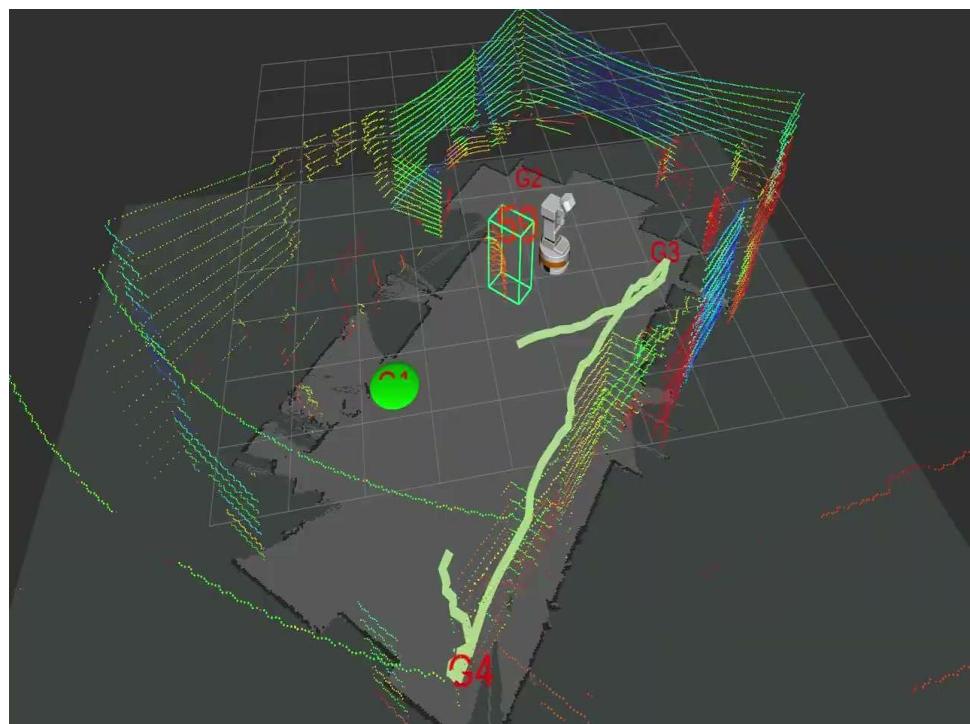
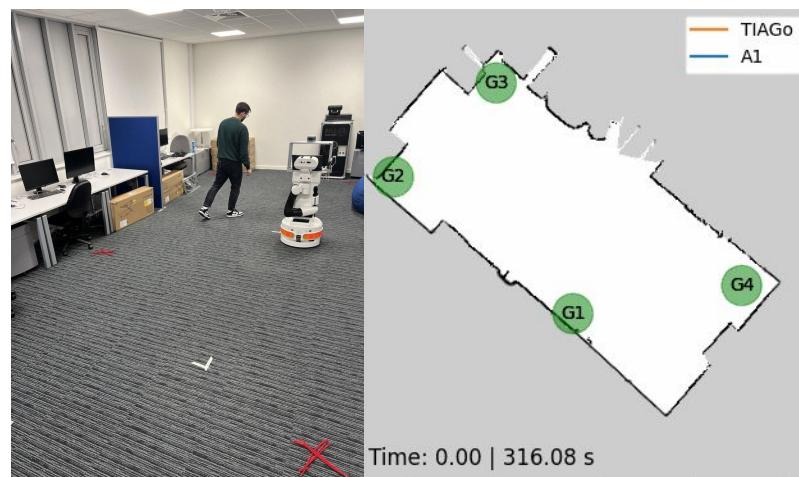
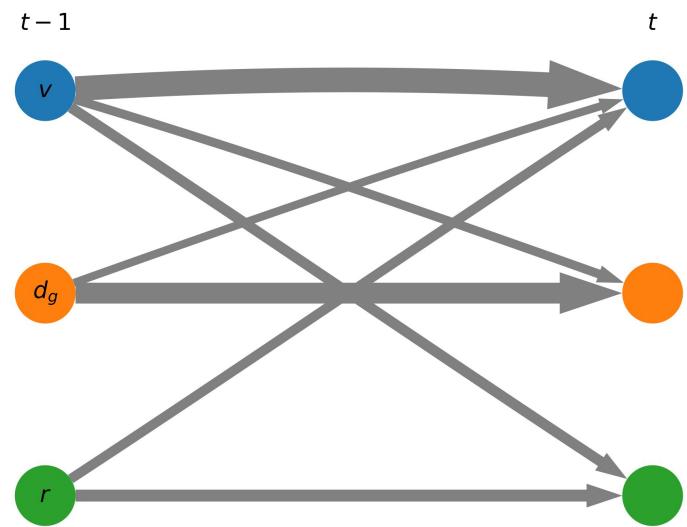
Robotics Applications

ROS-Causal



Robotics Applications

ROS-Causal



Reference

- Runge, J., Nowack, P., Kretschmer, M., Flaxman, S. and Sejdinovic, D., 2019. Detecting and quantifying causal associations in large nonlinear time series datasets. *Science advances*, 5(11).
- Castri, L., Mghames, S., Hanheide, M. and Bellotto, N., 2023. Enhancing Causal Discovery from Robot Sensor Data in Dynamic Scenarios. In 2nd Conference on Causal Learning and Reasoning.
- Castri, L., Beraldo, G., Mghames, S., Hanheide M. and Bellotto, N. 2024. Experimental Evaluation of ROS-Causal in Real-World Human-Robot Spatial Interaction Scenarios. In IEEE International Conference on Robot and Human Interactive Communication (RO-MAN).
- Castri, L., Mghames, S., Hanheide M. and Bellotto, N. 2024. CAnDOIT: Causal Discovery with Observational and Interventional Data from Time-Series, Advanced Intelligent Systems.

Thank you!
questions?