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The PC and FCI causal discovery methods work well with discrete/categorical data.
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The PC and FCI causal discovery methods work well with discrete/categorical data.
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What if our data is time-dependent?
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The PC and FCI causal discovery methods work well with discrete/categorical data.

What if we deal with time-series data?
PC/FCI is inappropriate to use with time series data due to:

● time ordering
● lagged dependencies
● high false positive rates due to the autocorrelation.

Causal Discovery for Time-series Data
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Causal Discovery for Time-series Data
PCMCI algorithm

It consists of two main steps:

● PC algorithm
retrieves the causal model structure by 
considering ONLY lagged dependencies as 
possible causal relationships between variables

● MCI test
validates the structure found at the previous 
step by performing a false positive rate 
optimisation control

Key parameter:     maximum time delay 



X

Y

Z

W

It consists of two main steps:

● PC algorithm
retrieves the causal model structure by 
considering ONLY lagged dependencies as 
possible causal relationships between variables

● MCI test
validates the structure found at the previous 
step by performing a false positive rate 
optimisation control

Key parameter:     maximum time delay 

Causal Discovery for Time-series Data
PCMCI algorithm



X

Y

Z

W

X

Y

Z

W

X

Y

Z

W

t - 2 t - 1 t

It consists of two main steps:

● PC algorithm
retrieves the causal model structure by 
considering ONLY lagged dependencies as 
possible causal relationships between variables

● MCI test
validates the structure found at the previous 
step by performing a false positive rate 
optimisation control

Key parameter:     maximum time delay 

Causal Discovery for Time-series Data
PCMCI algorithm



X

Y

Z

W

X

Y

Z

W

X

Y

Z

W

t - 2 t - 1 t

It consists of two main steps:

● PC algorithm
retrieves the causal model structure by 
considering ONLY lagged dependencies as 
possible causal relationships between variables

● MCI test
validates the structure found at the previous 
step by performing a false positive rate 
optimisation control

Key parameter:     maximum time delay 

Causal Discovery for Time-series Data
PCMCI algorithm



X

Y

Z

W

X

Y

Z

W

X

Y

Z

W

t - 2 t - 1 t

It consists of two main steps:

● PC algorithm
retrieves the causal model structure by 
considering ONLY lagged dependencies as 
possible causal relationships between variables

● MCI test
validates the structure found at the previous 
step by performing a false positive rate 
optimisation control

Key parameter:     maximum time delay 

Causal Discovery for Time-series Data
PCMCI algorithm



X

Y

Z

W

X

Y

Z

W

X

Y

Z

W

t - 2 t - 1 t

It consists of two main steps:

● PC algorithm
retrieves the causal model structure by 
considering ONLY lagged dependencies as 
possible causal relationships between variables

● MCI test
validates the structure found at the previous 
step by performing a false positive rate 
optimisation control

Key parameter:     maximum time delay 

Causal Discovery for Time-series Data
PCMCI algorithm



X

Y

Z

W

X

Y

Z

W

X

Y

Z

W

t - 2 t - 1 t

It consists of two main steps:

● PC algorithm
retrieves the causal model structure by 
considering ONLY lagged dependencies as 
possible causal relationships between variables

● MCI test
validates the structure found at the previous 
step by performing a false positive rate 
optimisation control

Key parameter:     maximum time delay 

Causal Discovery for Time-series Data
PCMCI algorithm



X

Y

Z

W

X

Y

Z

W

X

Y

Z

W

t - 2 t - 1 t

It consists of two main steps:

● PC algorithm
retrieves the causal model structure by 
considering ONLY lagged dependencies as 
possible causal relationships between variables

● MCI test
validates the structure found at the previous 
step by performing a false positive rate 
optimisation control

Key parameter:     maximum time delay 

Causal Discovery for Time-series Data
PCMCI algorithm



Causal Discovery for Time-series Data
PCMCI algorithm



● Causal Discovery for Time-series Data
○ PCMCI algorithm

● Robotics Applications
F-PCMCI algorithm
CAnDOIT algorithm
CausalFlow
ROS-Causal

Outline



Robotics Applications

Main challenges in robotics:

● execution time of the causal discovery analysis

● conduct causal discovery using data from 
observations and interventions

● conduct the causal discovery analysis online
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Robotics Applications
  F-PCMCI algorithm

Castri, Luca, et al. "Enhancing Causal Discovery from Robot Sensor Data in Dynamic Scenarios." (2023).

Filtered-PCMCI (F-PCMCI) steps:

● takes in input a prefixed set of variables

● the Transfer Entropy-based filter analyses and 
removes irrelevant variables (e.g., constants or 
isolated ones). The reduced variable set is used 
to create a hypothetical causal model

● the hypothetical causal model needs to be 
validated by a proper causal analysis, which is 
performed by PCMCI

This strategy enables faster and more accurate 
causal discovery

PCMCI computational cost depends on:

● the length of the time-series
● the number of variables
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F-PCMCI
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Robotics Applications
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Isolated F-PCMCI

PCMCI

Robotics Applications
  F-PCMCI algorithm



Castri, Luca, et al. "Enhancing Causal Discovery from Robot Sensor Data in Dynamic Scenarios." (2023).

Isolated
F-PCMCI

3mins

PCMCI
~9mins

Robotics Applications
  F-PCMCI algorithm



Considering the interaction scenario modelled by three variables 

● vij: relative velocity between agent i and j

● dij: distance between agent i and j

● thetaij: angle between agent i and j

Robotics Applications
  F-PCMCI algorithm

Are all the observable variables useful to understand the 
observed scenario?



Castri, Luca, et al. "Enhancing Causal Discovery from Robot Sensor Data in Dynamic Scenarios." (2023).
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Castri, Luca, et al. "Enhancing Causal Discovery from Robot Sensor Data in Dynamic Scenarios." (2023).

PCMCI ~80mins F-PCMCI ~18mins

Robotics Applications
  F-PCMCI algorithm
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Robotics Applications
  CAnDOIT algorithm

● Observational data alone are often insufficient to accurately identify the correct causal model in 
complex scenarios where not all variables are observable
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Robotics Applications
  CAnDOIT algorithm

● Observational data alone are often insufficient to accurately identify the correct causal model in 
complex scenarios where not all variables are observable

Causal model obtained by using Latent-PCMCI 
(LPCMCI): version of PCMCI, based on FCI, that 
handles latent variables
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Robotics Applications
  CAnDOIT algorithm

● Observational data alone are often insufficient to accurately identify the correct causal model in 
complex scenarios where not all variables are observable

Causal model obtained by using Latent-PCMCI 
(LPCMCI): version of PCMCI, based on FCI, that 
handles latent variables

Despite the "simple" toy problem (linear, 4 variables)
● reconstructing the causal model from data is 

never straightforward
● especially when there are hidden confounders

How can we perform causal discovery using data from observations      and interventions     ?



Robotics Applications
  CAnDOIT algorithm

CAnDOIT: CAusal Discovery with Observational      and Interventional      data from Time-series

● Observational data alone are often insufficient to accurately identify the correct causal model in 
complex scenarios where not all variables are observable

● We need interventions

Castri, Luca, et al. "CAnDOIT: Causal Discovery with Observational and Interventional Data from Time Series" (2024).

A

B
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A

B

C A

B

C

● For the observational case, we need 
to consider B’s parents

● For the interventional case, we need 
to remove all incoming links to B

How can we enable a causal 
discovery method to do this?

B
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Robotics Applications
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● Observational data alone are often insufficient to accurately identify the correct causal model in 
complex scenarios where not all variables are observable

● We need interventions

Castri, Luca, et al. "CAnDOIT: Causal Discovery with Observational and Interventional Data from Time Series" (2024).
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     CAnDOIT uses context variables

B

A

B

C

CB CB is a exogenous dummy variable 
exploited to inject interventional data



CAnDOIT: CAusal Discovery with Observational      and Interventional      data from Time-series

Robotics Applications
  CAnDOIT algorithm
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● Observational data alone are often insufficient to accurately identify the correct causal model in 
complex scenarios where not all variables are observable

● We need interventions

Castri, Luca, et al. "CAnDOIT: Causal Discovery with Observational and Interventional Data from Time Series" (2024).
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● Observational data alone are often insufficient to accurately identify the correct causal model in 
complex scenarios where not all variables are observable

● We need interventions

Causal model obtained by using CAnDOIT
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Consider the brightness of the colours of the objects in the cylinder captured by a robot camera

Castri, Luca, et al. "CAnDOIT: Causal Discovery with Observational and Interventional Data from Time Series" (2024).

camera

3D representation 2D representation
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Robotics Applications
  CAnDOIT algorithm

Castri, Luca, et al. "CAnDOIT: Causal Discovery with Observational and Interventional Data from Time Series" (2024).

Consider the brightness of the colors of the objects in the cylinder captured by a robot camera
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Castri, Luca, et al. "CAnDOIT: Causal Discovery with Observational and Interventional Data from Time Series" (2024).

Again, LPCMCI is uncertain
about the orientation of this link
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Castri, Luca, et al. "CAnDOIT: Causal Discovery with Observational and Interventional Data from Time Series" (2024).

CAnDOIT using observational and 
interventional data is able to correctly 

orient this link
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Robotics Applications
  CausalFlow

DYNOTEARS
PCMCI

PCMCI+

LPCMCI

J-PCMCI+

TCDF
tsFCI

VarLiNGAM

CAnDOIT

F-PCMCI

        CausalFlow

CausalFlow

GitHub

pip install 
py-causalflow
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What is Robot Operating System (ROS)?

people tracker

navigation stack

…
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human 
topics

robot 
topics

roscausal

roscausal_robot

robot_state

HRI SCENARIO

roscausal_discovery

causal_discovery

roscausal_data

data_collection

csv pool

csv csv

roscausal/causal_model

roscausal_human

roscausal/robot

human_state
roscausal/human

postprocess
csv

● ROS-Causal extracts and collects data from a HRI scenario, such as agents’ trajectories, 
and performs causal analysis on the collected data in a batched manner. It is composed by 
four different rosnodes:

○ roscausal_robot

○ roscausal_human

○ roscausal_data

○ roscausal_discovery

Robotics Applications
  ROS-Causal

Castri, Luca, et al. "Experimental Evaluation of ROS-Causal in Real-World Human-Robot Spatial Interaction Scenarios" (2024).



ROS-Causal_HRISim

HRI simulator involving:

● TIAGo robot

● pedestrians
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Castri, Luca, et al. "Experimental Evaluation of ROS-Causal in Real-World Human-Robot Spatial Interaction Scenarios" (2024).



Castri, Luca, et al. "Experimental Evaluation of ROS-Causal in Real-World Human-Robot Spatial Interaction Scenarios" (2024).
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https://docs.google.com/file/d/1ISTt7k-Sg2J5d8HIYHhDXWWmNV1eSM_z/preview
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