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Causal Discovery for Time-series Data

The PC and FCI causal discovery methods work well with discrete/categorical data.

example

non-smoker 0 - smoker 1

age under 50 0 - age over 50 1
no lung cancer 0 - lung cancer 1

Smoker Age Lung cancer
0 0 0
0 0 1
0 1 0
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Causal Discovery for Time-series Data

The PC and FCI causal discovery methods work well with discrete/categorical data.

What if we deal with time-series data?
PC/FCI is inappropriate to use with time series data due to:
e time ordering
e lagged dependencies
e high false positive rates due to the autocorrelation

X = 02X, P+ .
X = S i L

LX) =0.3(X)" 4

A

0 100 200 300 400
time



Outline

e Causal Discovery for Time-series Data
o PCMCI algorithm

%o
Ov\,,



Causal Discovery for Time-series Data
PCMCI algorithm

It consists of two main steps:

e PC algorithm
retrieves the causal model structure by
considering ONLY lagged dependencies as
possible causal relationships between variables

e MCI test
validates the structure found at the previous
step by performing a false positive rate
optimisation control

X;_ . AL X{|P(X_.),P(X])

Key parameter: T maximum time delay
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Robotics Applications

Main challenges in robotics:
e execution time of the causal discovery analysis

e conduct causal discovery using data from
observations and interventions

e conduct the causal discovery analysis online
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Robotics Applications
&® F-PCMCI algorithm

PCMCI computational cost depends on:

e the length of the time-series
e the number of variables

Filtered-PCMCI (F-PCMCI) steps:
e takes in input a prefixed set of variables

e the Transfer Entropy-based filter analyses and
removes irrelevant variables (e.g., constants or
isolated ones). The reduced variable set is used
to create a hypothetical causal model

e the hypothetical causal model needs to be
validated by a proper causal analysis, which is
performed by PCMCI

This strategy enables faster and more accurate
causal discovery

Castri, Luca, et al. "Enhancing Causal Discovery from Robot Sensor Data in Dynamic Scenarios."

4 )

\\
N
2.
'
/

d)

CAUSALDBCOVERY

]

(2023).



Robotics Applications
&® F-PCMCI algorithm

PCMCI computational cost depends on:

e the length of the time-series
e the number of variables

Filtered-PCMCI (F-PCMCI) steps:

e takes in input a prefixed set of variables

e the Transfer Entropy-based filter analyses and
removes irrelevant variables (e.g., constants or
isolated ones). The reduced variable set is used
to create a hypothetical causal model CAUSAL DISCOVERY

e the hypothetical causal model needs to be
validated by a proper causal analysis, which is
performed by PCMCI

This strategy enables faster and more accurate
causal discovery

Castri, Luca, et al. "Enhancing Causal Discovery from Robot Sensor Data in Dynamic Scenarios." (2023).



Robotics Applications
&® F-PCMCI algorithm

PCMCI
2o (t) = 2z, (t — 1) + 3z3(t — 1) +
x1(t) = m
zo(t) = L1z (t — 1)% +
L wg(t) =as(t—1)-2(t—1) +ms
x4(t) =x4(t — 1) +25(t —1)-zo(t — 1) +ma
z5(t) = s
26 (t) = 76 F-PCMCI

Castri, Luca, et al. "Enhancing Causal Discovery from Robot Sensor Data in Dynamic Scenarios." (2023).
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PCMCI
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Castri, Luca, et al. "Enhancing Causal Discovery from Robot Sensor Data in Dynamic Scenarios." (2023).
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&® F-PCMCI algorithm

PCMCI
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Castri, Luca, et al. "Enhancing Causal Discovery from Robot Sensor Data in Dynamic Scenarios." (2023).
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Considering the interaction scenario modelled by three variables

* v relative velocity between agent i and |

° dij: distance between agentiand j

° thetaij: angle between agenti and j

Are all the observable variables useful to understand the
observed scenario?
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Robotics Applications
#_ CAnDOIT algorithm

e Observational data alone are often insufficient to accurately identify the correct causal model in
complex scenarios where not all variables are observable

( t-2 t-1 t

Xo(t) = 0.9Xo(t — 1) + 0.6X1 () + 1o .
< Ly(t) =m

Xo(t) = 0.9X(t — 1) + 0.4X7 (t — 1) + 1o

| X3(t) = 0.9X5(t — 1) — 0.5Xa(t — 2) + s
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Robotics Applications
#_ CAnDOIT algorithm

e Observational data alone are often insufficient to accurately identify the correct causal model in
complex scenarios where not all variables are observable

( _ Causal model obtained by using Latent-PCMCI
Xo(t) 0. QXO(t 1) +0. 6X1( ) 1o (LPCMCI): version of PCMCI, based on FCI, that
< Li(t) =m handles latent variables
Xg(t) = 09X2(t — ].) + 04X1 (t — 1) + 72 §s S i
ng(t) =09X3(t—1) —0.5X2(t —2) + 13
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Robotics Applications
#_ CAnDOIT algorithm

e Observational data alone are often insufficient to accurately identify the correct causal model in
complex scenarios where not all variables are observable

( . _ Causal model obtained by using Latent-PCMCI
Xo(t) o O'QXO(t 1) +0.6X, (t) 70 (LPCMCI): version of PCMCI, based on FCl, that
Li(t) =m handles latent variables

Xo(t) =0.9X5(t — 1) +0.4X, (t — 1) + o
| X5(t) = 0.9X3(t — 1) — 0.5X5(t —2) + 3 . s —. e —

Despite the "simple" toy problem (linear, 4 variables) \ \
e reconstructing the causal model from data is X » -
never straightforward
-

e especially when there are hidden confounders
—

t-2 t—=1 t

X3

How can we perform causal discovery using data from observations « ¢« and interventions ¢ ?
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e Observational data alone are often insufficient to accurately identify the correct causal model in
complex scenarios where not all variables are observable
e \We need interventions

‘CAnDOIT: CAusal Discovery with Observational « « and Interventional ¢ data from Time-series
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e Observational data alone are often insufficient to accurately identify the correct causal model in
complex scenarios where not all variables are observable
e \We need interventions

‘CAnDOIT: CAusal Discovery with Observational « « and Interventional ¢ data from Time-series

e For the observational case, we need
to consider B’s parents

° G e For the interventional case, we need
» to remove all incoming links to B
How can we enable a causal
e e discovery method to do this?
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e Observational data alone are often insufficient to accurately identify the correct causal model in
complex scenarios where not all variables are observable
e \We need interventions

‘CAnDOIT: CAusal Discovery with Observational « « and Interventional ¢ data from Time-series

# CANnDOIT uses context variables

O OJNOSS OO0

CB CB is a exogenous dummy variable
exploited to inject interventional data
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e Observational data alone are often insufficient to accurately identify the correct causal model in
complex scenarios where not all variables are observable
e \We need interventions

CANnDOIT: CAusal Discovery with Observational <« and Interventional ¢ data from Time-series
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Castri, Luca, et al. "CAnDOIT: Causal Discovery with Observational and Interventional Data from Time Series" (2024).



Robotics Applications
#_ CAnDOIT algorithm

e Observational data alone are often insufficient to accurately identify the correct causal model in
complex scenarios where not all variables are observable
e \We need interventions

Causal model obtained by using CAnDOIT

CX3
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Consider the brightness of the colours of the objects in the cylinder captured by a robot camera

3D representation 2D representation

Castri, Luca, et al. "CAnDOIT: Causal Discovery with Observational and Interventional Data from Time Series" (2024).
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Consider the brightness of the colours of the objects in the cylinder captured by a robot camera

P O

3D representation 2D representation

Castri, Luca, et al. "CAnDOIT: Causal Discovery with Observational and Interventional Data from Time Series" (2024).
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Consider the brightness of the colors of the objects in the cylinder captured by a robot camera

Fu(t) = WH(t — 1) Aﬂﬂ'
Ce(t) = b(

b(H(t —1),v(t — 1), du(t — 1))

l) :::-IKZh }qiz;m _+-.l§:v (z]-._- TW;Lm :) -+-.lkad CLfL: ‘“‘i::::::::::::::!““\ ‘“‘i:::::::::::::::““‘

Castri, Luca, et al. "CAnDOIT: Causal Discovery with Observational and Interventional Data from Time Series" (2024).
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Fo(t) = b(H(t — 1))
Cu(t) = b(H(t — 1), v(t — 1), d(t — 1))

Castri, Luca, et al. "CAnDOIT: Causal Discovery with Observational and Interventional Data from Time Series" (2024).
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N t—1 t
Fe
Ce
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a O

Fo(t) = b(H(t — 1))
Cu(t) = b(H(t — 1), v(t — 1), d,(t — 1))
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Telet
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Again, LPCMCI is uncertain
about the orientation of this link

Castri, Luca, et al. "CAnDOIT: Causal Discovery with Observational and Interventional Data from Time Series" (2024).
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CANnDOIT using observational and
interventional data is able to correctly
orient this link

Cu(t) = b(H(t — 1), v(t — 1), d(t — 1))

{ Fo(t) = bHE#<1]) @

Castri, Luca, et al. "CAnDOIT: Causal Discovery with Observational and Interventional Data from Time Series" (2024).
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Robotics Applications

>* CausalFlow

PCMCI
DYNOTEARS PCMCI+

¢ CAnDOIT \ / LPCMCI
) 2
(;)QO CausalFlow

%o F-PCMCI \ J-PCMCI+

VarLiNGAM TCDF
tsFCI

'.'. :

.~ CausalFlow

pip install
py-causalflow
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Robotics Applications
#¢ ROS-Causal

What is Robot Operating System (ROS)?

people tracker

navigation stack
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What is Robot Operating System (ROS)?

people tracker

navigation stack

“: ROS-Causal
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#¢ ROS-Causal

______________________________________________________________________

/"HRI SCENARIO 2 roscausal

:
1
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1
1
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e ROS-Causal extracts and collects data from a HRI scenario, such as agents’ trajectories,
and performs causal analysis on the collected data in a batched manner. It is composed by
four different rosnodes:

o roscausal_robot
o roscausal_human
o roscausal_data

o roscausal_discovery
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ROS-Causal_HRISIim (o

HRI simulator involving: ®E L=

e TIAGoO robot q

e pedestrians M
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Castri, Luca, et al. "Experimental Evaluation of ROS-Causal in Real-World Human-Robot Spatial Interaction Scenarios" (2024).
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. Time: 0.00 | 316.08 s

Castri, Luca, et al. "Experimental Evaluation of ROS-Causal in Real-World Human-Robot Spatial Interaction Scenarios" (2024).


https://docs.google.com/file/d/1ISTt7k-Sg2J5d8HIYHhDXWWmNV1eSM_z/preview
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