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Causal Structure Learning Causal Reasoning

Causality Overview

What is it? 

“Science that studies the cause-and-effect relationship between events”
[Pearl, J., & Mackenzie, D. (2019). The book of why]
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Causal Representation 
Learning

How can robots benefit from causality?
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○ Causality for modelling human spatial behaviour and robot interactions?

Causality applications so far: 

● Climate [Runge et al. 2014, 2018, 2019, 2020, Kretschmer et al. 2016, 2017, 2018, …]

● Healthcare [Runge et al. 2015, Saetie et al. 2021, …]

● Machine learning [Schölkopf et al. 2021, Seitzer et al. 2021, …] 

● Robotics 
○ Imitation learning [Kats et al. 2018, Angelov et al. 2019, 2020]
○ Manipulation [Brawer et al. 2021, Lee et al. 2022, 2023, Cannizzaro et al. 2023a]
○ Autonomous Driving [Howard et al. 2023a,b, 2025]
○ Social HRI [Love et al. 2024a,b]
○ Others [Cao et al. 2021, Cannizzaro et al. 2023b]

Motivation
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Causality not employed
[Mahata et al. 2017, Vasconez et al. 2019, 
Jahanmahin et al. 2022, Mukherjee et al. 2022,
Dahiya et al. 2023]
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Motivation
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Having a causal model of human spatial behaviours 
could enable robots to reason as follows:

● “what happens if I go this way?” 

Why do we need causal models?  
Traditional modelling approaches for human spatial 
behaviours often ignore the factors that influence them

activity schedule
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Having a causal model of human spatial behaviours 
could enable robots to reason as follows:

● “what happens if I go this way?” 

● “what would have happened if I had gone 
another way?”

Why do we need causal models?  
Traditional modelling approaches for human spatial 
behaviours often ignore the factors that influence them

Motivation
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➔ deeper understanding of the scenario
➔ decision-making and forecasting
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Causality & Robotics: Challenges
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Challenge

● Limited resources and real-time demands in 
mobile robots

Research Question 1:

➔ Is time-series causal discovery feasible for 
mobile robots in human-shared environments?
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Causality & Robotics: Challenges
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Challenge

● Causal discovery from time-series uses only 
observations

● Robots cannot use their embodiment to support 
causal discovery through interventions

Research Question 2:

➔ Can causal discovery integrate observational 
and interventional time-series?
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Causality & Robotics: Challenges

Challenge

● Causal discovery not integrated into ROS

● No causal reasoning in decision-making

Research Question 3:

➔ Can robots autonomously reconstruct and 
use causal models to enhance 
decision-making and interactions in 
human-shared spaces?
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What if I 
DO(X)?
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Contributions
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Fast and accurate causal 
discovery algorithm for 

time-series

Observation and 
intervention-based causal 

discovery algorithm for 
time-series

Integrating Causal 
Inference for 

Autonomous Robots in 
Dynamic Environments
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Contributions
Fast and accurate causal discovery algorithm for time-series
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Is time-series causal discovery feasible for mobile robots in human-shared environments?

Limitation: PCMCI execution time
➔ We need a fast causal discovery method

● PCMCI [Runge et al. 2019]
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● PCMCI computational complexity

● Are all robot-observed variables useful?

12

Contributions
Fast and accurate causal discovery algorithm for time-series

Is it possible to improve the causal discovery process?

● Build an all-in-one solution to select key 
variables and reconstruct a causal model

GOAL
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        Filtered-PCMCI (F-PCMCI)

1. predefined set of variables
2. remove irrelevant variables using transfer entropy
3. build hypothetical causal structure from reduced set
4. run PCMCI on hypothetical model

➔ Faster and more accurate causal discovery

Contributions
Fast and accurate causal discovery algorithm for time-series

Is it possible to improve the causal discovery process?
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Contributions
Fast and accurate causal discovery algorithm for time-series

Is it possible to improve the causal discovery process?

isolated F-PCMCI
3mins

PCMCI
~9mins

Toy problem

fMRI data  [Smith et al. 2011]

GT PCMCI F-PCMCI
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Contributions
Fast and accurate causal discovery algorithm for time-series

Is it possible to improve the causal discovery process?
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● No ground-truth causal model

● Prediction accuracy used to evaluate causal models
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Contributions
Fast and accurate causal discovery algorithm for time-series

Summing up
● Causal discovery is feasible in dynamic human-shared scenarios

● F-PCMCI for fast and accurate causal discovery

Main limitation: Time-series causal discovery uses only observations. Can interventions help?

● Castri et al. “Causal discovery of dynamic models for predicting 
human spatial interactions,” in International Conference on Social 
Robotics, 2022.

● Castri et al. “Enhancing causal discovery from robot sensor data in 
dynamic scenarios,” in Conference on Causal Learning and 
Reasoning, 2023.

Research outcomes
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Contributions
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Observation and intervention-based causal discovery algorithm for time-series

Can causal discovery integrate observational and interventional time-series?

● First causal discovery method for time-series that 
uses both observational and interventional data

GOAL

● Observational data alone are often insufficient
to identify the correct causal model

● Time-series methods do not integrate interventional data
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Contributions
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Observation and intervention-based causal discovery algorithm for time-series

Can causal discovery integrate observational and interventional time-series?

L1L1L1

X0X0X0
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LATENT
LPCMCI [Gerhardus et al. 2020] 

● based on FCI
● handles latent confounders

=
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Observation and intervention-based causal discovery algorithm for time-series
Contributions

Can causal discovery integrate observational and interventional time-series?

CAusal Discovery with Observational      and 
Interventional      data from Time-series

      CAnDOIT

A

B

C A

B

C

B

HARD INTERVENTION
● observation: use B’s parents
● intervention: remove all inputs to B

 How to build this into causal discovery?

A

B

C

CB

context variables to inject 
interventional data 

[Mooij et al. 2020]
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Observation and intervention-based causal discovery algorithm for time-series
Contributions

Can causal discovery integrate observational and interventional time-series?
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Observation and intervention-based causal discovery algorithm for time-series
Contributions

Can causal discovery integrate observational and interventional time-series?
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● Floor and cube colours’ brightness 
influenced by:

○ camera height
○ camera velocity
○ camera distance to the cube
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Observation and intervention-based causal discovery algorithm for time-series
Contributions

Can causal discovery integrate observational and interventional time-series?
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[Ahmed et al. 2021]
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Contributions
Observation and intervention-based causal discovery algorithm for time-series

Summing up
● First observation and intervention-based causal discovery method from time-series

Main limitation: 
Causal discovery for robots: data collection + offline discovery process. ROS integration?

● Castri et al. “CAnDOIT: Causal Discovery with Observational and 
Interventional Data from Time-Series”, Advanced Intelligent Systems, 2024.

Research outcomes
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Integrating Causal Inference for Autonomous Robots in Dynamic Environments
Contributions

Can robots autonomously reconstruct causal models?

PCMCI F-PCMCI

TCDF
DYNOTEARS TiMINo

VARLiNGAM tsFCI

● First ROS-based causal analysis framework
GOAL

● Causal discovery methods lack an integration with ROS

○ cannot run directly on robots

○ requires data collection + offline analysis

○ causal models not usable in real-time
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human topics

robot topics

        roscausal

roscausal_robot

robot_state

HRI SCENARIO

roscausal_discovery

causal_discovery

roscausal_data

data_collection

csv pool

csv csv

roscausal/causal_model

roscausal/human

roscausal/robot

roscausal_human

human_state

postprocess

csv

●      ROS-Causal is composed by four different rosnodes:

○ roscausal_robot
○ roscausal_human
○ roscausal_data
○ roscausal_discovery

Integrating Causal Inference for Autonomous Robots in Dynamic Environments
Contributions

Can robots autonomously reconstruct causal models?
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Integrating Causal Inference for Autonomous Robots in Dynamic Environments
Contributions

● ROS-Causal_HRISim
○ TIAGo robot

○ teleoperated and autonomous pedestrians

Multi-agent scenario 

variables expected cause-effect relationships

Can robots autonomously reconstruct causal models?

inverse relationship
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Integrating Causal Inference for Autonomous Robots in Dynamic Environments
Contributions

● ROS-Causal_HRISim
○ TIAGo robot

○ teleoperated and autonomous pedestrians

Multi-agent scenario 

variables expected cause-effect relationships

Can robots autonomously reconstruct causal models?

High collision risk 
→ Person slows 
down or stops
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Integrating Causal Inference for Autonomous Robots in Dynamic Environments
Contributions

● TIAGo task:
○ predefined rectangular path

● Participant task
○ four goal positions
○ avoid the robot

Can robots autonomously reconstruct causal models?
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Integrating Causal Inference for Autonomous Robots in Dynamic Environments
Contributions

Summing up
● Generate causal models directly robot onboard using data from its own sensors

Main limitation: Causal models are discovered. Can the robot actually use them?

Research outcomes
● Castri et al. “Experimental Evaluation of ROS-Causal in Real-World 

Human-Robot Spatial Interaction Scenarios,” in IEEE International 
Conference on Robot and Human Interactive Communication 
(RO-MAN), 2024.      

● Castri et al. “ROS-Causal: A ROS-based Causal Analysis Framework for 
Human-Robot Interaction Applications,” Workshop on Causal Learning 
for Human-Robot Interaction (Causal-HRI), ACM/IEEE International 
Conference on Human-Robot Interaction (HRI), 2024.

ROS-Causal
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Integrating Causal Inference for Autonomous Robots in Dynamic Environments
Contributions

Can robots use causal models to enhance decisions and interactions in human-shared spaces?

● Human-aware navigation 

○ relies on predictive models of human motion

○ ignores contextual factors

● Potential safety and efficiency issues

● Causality-enhanced decision-making framework
GOAL
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Integrating Causal Inference for Autonomous Robots in Dynamic Environments
Contributions

Can robots use causal models to enhance decisions and interactions in human-shared spaces?

➔ Will the robot have enough battery to complete the task?
➔ Will the robot get stuck in a crowd, potentially compromising human safety?
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Integrating Causal Inference for Autonomous Robots in Dynamic Environments
Contributions

Can robots use causal models to enhance decisions and interactions in human-shared spaces?

Robot Task “What if I go to       now at velocity v?”

Safety and efficiency 
take priority over 
distance



Luca Castri – lcastri@lincoln.ac.uk 33

Integrating Causal Inference for Autonomous Robots in Dynamic Environments
Contributions

Can robots use causal models to enhance decisions and interactions in human-shared spaces?

PeopleFlow
● context-sensitive humans and robot behaviours in 

a warehouse setting
● TIAGo robot and autonomous pedestrians
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Integrating Causal Inference for Autonomous Robots in Dynamic Environments
Contributions

Can robots use causal models to enhance decisions and interactions in human-shared spaces?
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Integrating Causal Inference for Autonomous Robots in Dynamic Environments
Contributions

Can robots use causal models to enhance decisions and interactions in human-shared spaces?

efficiency safety
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Integrating Causal Inference for Autonomous Robots in Dynamic Environments
Contributions

Summing up
● Causality-enhanced decision-making framework for mobile robots in dynamic settings

Research outcomes

● Castri et al. “Causality-enhanced Decision-Making for Autonomous Mobile 
Robots in Dynamic Environments,” under review.    

PeopleFlow
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A collection of causal discovery methods from time-series:

●      CAnDOIT
●      F-PCMCI
● PCMCI
● PCMCI+
● LPCMCI

RandomGraph 

● random systems of equations with(out) hidden confounders
● observational and interventional data from the generated graph
● various adjustable parameters (time-series length, obs vars, hidden vars, etc..)

● J-PCMCI+
● TCDF
● tsFCI
● DYNOTEARS
● VarLiNGAM
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Summary

● Castri et al. “Causal discovery of dynamic models for predicting human 
spatial interactions,” in International Conference on Social Robotics, 2022.

● Castri et al. “Enhancing causal discovery from robot sensor data in dynamic 
scenarios,” in Conference on Causal Learning and Reasoning, 2023.

● Castri et al. “CAnDOIT: Causal Discovery with Observational and 
Interventional Data from Time-Series”, Advanced Intelligent Systems, 2024.

● Castri et al. “Experimental Evaluation of ROS-Causal in Real-World 
Human-Robot Spatial Interaction Scenarios,” in IEEE International Conference 
on Robot and Human Interactive Communication (RO-MAN), 2024.      

● Castri et al. “ROS-Causal: A ROS-based Causal Analysis Framework for 
Human-Robot Interaction Applications,” Workshop on Causal Learning for 
Human-Robot Interaction (Causal-HRI), ACM/IEEE International Conference 
on Human-Robot Interaction (HRI), 2024.

● Castri et al. “Causality-enhanced Decision-Making for Autonomous Mobile 
Robots in Dynamic Environments,” under review.
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  ROS-Causal

 Papers  Software

Thank you! 

Questions?

Personal 
webpage

PeopleFlow


